The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)...The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)are susceptible to pH-dependent dissolution in water,which can result in the loss of photocatalysts and additional environ-mental pollution.To obtain zinc oxide-based composites with low dissolution and high antibacterial efficiency for pho-tocatalytic water disinfection,we prepared MoS_(2)/ZnO@CS composites via a precipitation method to encapsulate chitosan(CS)around MoS_(2)/ZnO.The amino groups in the CS molecules act as storerooms for hydrogen ions,which inhibits the dissolution of zinc oxide.In addition,the MoS_(2)/ZnO@CS composites exhibit high production of reactive oxygen species(ROS)and broad-spectrum antibacterial activity under simulated solar irradiation(0.1 W·cm^(-2)).This makes it an excellent antibacterial agent for solar disinfection in water treatment.展开更多
ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced...ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.展开更多
V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve th...V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.展开更多
基金Supported by the National Program on Key Basic Research Project of China(973 Program)(2014CB238903)the National Natural Science Foundation of China(21306181)Equipment Function Development and Technology Innovation Project of Chinese Academy of Science(YG2012064)
基金supported in part by the National Natural Science Foundation of China(12174366)Fundamental Re-search Funds for the Central Universities(WK3450000005)the Anhui Provincial Natural Science Foundation(2108085MC93).
文摘The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)are susceptible to pH-dependent dissolution in water,which can result in the loss of photocatalysts and additional environ-mental pollution.To obtain zinc oxide-based composites with low dissolution and high antibacterial efficiency for pho-tocatalytic water disinfection,we prepared MoS_(2)/ZnO@CS composites via a precipitation method to encapsulate chitosan(CS)around MoS_(2)/ZnO.The amino groups in the CS molecules act as storerooms for hydrogen ions,which inhibits the dissolution of zinc oxide.In addition,the MoS_(2)/ZnO@CS composites exhibit high production of reactive oxygen species(ROS)and broad-spectrum antibacterial activity under simulated solar irradiation(0.1 W·cm^(-2)).This makes it an excellent antibacterial agent for solar disinfection in water treatment.
基金supported by the National Natural Science Foundation of China(61774140).
文摘ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.
文摘V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.