孪生支持向量机(twin support vector machine,TSVM)能有效地处理交叉或异或等类型的数据.然而,当处理集值数据时,TSVM通常利用集值对象的均值、中值等统计信息.不同于TSVM,提出能直接处理集值数据的孪生支持函数机(twin support functi...孪生支持向量机(twin support vector machine,TSVM)能有效地处理交叉或异或等类型的数据.然而,当处理集值数据时,TSVM通常利用集值对象的均值、中值等统计信息.不同于TSVM,提出能直接处理集值数据的孪生支持函数机(twin support function machine,TSFM).依据集值对象定义的支持函数,TSFM在巴拿赫空间取得非平行的超平面.为了抑制集值数据中的离群点,TSFM采用了弹球损失函数并引入了集值对象的权重.考虑到TSFM是无穷维空间的优化问题,测度采用狄拉克测度的线性组合的形式,这构建有限维空间的优化模型.为了有效地求解优化模型,利用采样策略将模型转化成二次规划(quadratic programming,QP)问题并推导出二次规划问题的对偶形式,这为判断哪些采样点是支持向量提供了理论基础.为了分类集值数据,定义集值对象到巴拿赫空间的超平面的距离并由此得出判别规则.也考虑支持函数的核化以便取得数据的非线性特征,这使得提出的模型可用于不定核函数.实验结果表明,TSFM能获取交叉类型的集值数据的内在结构,并且在离群点或集值对象包含少量高维事例的情况下取得了良好的分类性能.展开更多
已有基于深度强化学习(Deep Reinforcement Learning,DRL)的云数据中心任务调度算法存在有效经验利用率低造成训练成本高、状态空间维数不固定和维度较高导致学习震荡,以及策略更新步长固定造成的收敛速度慢等问题。为解决以上问题,基...已有基于深度强化学习(Deep Reinforcement Learning,DRL)的云数据中心任务调度算法存在有效经验利用率低造成训练成本高、状态空间维数不固定和维度较高导致学习震荡,以及策略更新步长固定造成的收敛速度慢等问题。为解决以上问题,基于云数据中心场景构建并行任务调度框架,并以时延、能耗和负载均衡为目标研究云任务调度问题。在DRL算法A2C(Advantage Actor Critic)的基础上,提出了一种基于自适应状态优选和动态步长的云数据中心任务调度算法(Adaptive state Optimization and Dynamic Step size A2C,AODS-A2C)。首先,使用准入控制和优先级策略对队列任务进行筛选和排序,提高有效经验的利用率;其次,将动态高维状态以自适应的方式进行快速优选处理,保持相对稳定的状态空间,避免训练过程中出现震荡问题;最后,使用JS(Jensen Shannon)散度度量新旧策略的概率分布差异,并根据这种差异动态地匹配调整Actor网络和Critic网络的学习步长,从而将当前学习状态迅速调整为最佳值,提高算法的收敛速度。仿真实验结果表明,所提出的AODS-A2C算法具有收敛速度快、鲁棒性高等特点,相较于其他对比算法在时延方面降低了1.2%到34.4%,在能耗方面降低了1.6%到57.2%,并可以实现良好的负载均衡。展开更多
文摘孪生支持向量机(twin support vector machine,TSVM)能有效地处理交叉或异或等类型的数据.然而,当处理集值数据时,TSVM通常利用集值对象的均值、中值等统计信息.不同于TSVM,提出能直接处理集值数据的孪生支持函数机(twin support function machine,TSFM).依据集值对象定义的支持函数,TSFM在巴拿赫空间取得非平行的超平面.为了抑制集值数据中的离群点,TSFM采用了弹球损失函数并引入了集值对象的权重.考虑到TSFM是无穷维空间的优化问题,测度采用狄拉克测度的线性组合的形式,这构建有限维空间的优化模型.为了有效地求解优化模型,利用采样策略将模型转化成二次规划(quadratic programming,QP)问题并推导出二次规划问题的对偶形式,这为判断哪些采样点是支持向量提供了理论基础.为了分类集值数据,定义集值对象到巴拿赫空间的超平面的距离并由此得出判别规则.也考虑支持函数的核化以便取得数据的非线性特征,这使得提出的模型可用于不定核函数.实验结果表明,TSFM能获取交叉类型的集值数据的内在结构,并且在离群点或集值对象包含少量高维事例的情况下取得了良好的分类性能.
文摘已有基于深度强化学习(Deep Reinforcement Learning,DRL)的云数据中心任务调度算法存在有效经验利用率低造成训练成本高、状态空间维数不固定和维度较高导致学习震荡,以及策略更新步长固定造成的收敛速度慢等问题。为解决以上问题,基于云数据中心场景构建并行任务调度框架,并以时延、能耗和负载均衡为目标研究云任务调度问题。在DRL算法A2C(Advantage Actor Critic)的基础上,提出了一种基于自适应状态优选和动态步长的云数据中心任务调度算法(Adaptive state Optimization and Dynamic Step size A2C,AODS-A2C)。首先,使用准入控制和优先级策略对队列任务进行筛选和排序,提高有效经验的利用率;其次,将动态高维状态以自适应的方式进行快速优选处理,保持相对稳定的状态空间,避免训练过程中出现震荡问题;最后,使用JS(Jensen Shannon)散度度量新旧策略的概率分布差异,并根据这种差异动态地匹配调整Actor网络和Critic网络的学习步长,从而将当前学习状态迅速调整为最佳值,提高算法的收敛速度。仿真实验结果表明,所提出的AODS-A2C算法具有收敛速度快、鲁棒性高等特点,相较于其他对比算法在时延方面降低了1.2%到34.4%,在能耗方面降低了1.6%到57.2%,并可以实现良好的负载均衡。