期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CNN-LSTM混合神经网络的炼化污水处理场COD排放浓度预测
1
作者 何为 岳留强 +3 位作者 唐智和 栾辉 陈昌照 王若尧 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期121-129,共9页
快速、准确预测含油污水中有机污染物的化学需氧量(COD),及时优化运行参数,对于石油炼化企业节能减排、污水达标排放极为重要和迫切。为此,以某炼化企业污水处理场生产要素和COD排放浓度数据为研究样本,提出一种增加先验知识的CNN-LSTM... 快速、准确预测含油污水中有机污染物的化学需氧量(COD),及时优化运行参数,对于石油炼化企业节能减排、污水达标排放极为重要和迫切。为此,以某炼化企业污水处理场生产要素和COD排放浓度数据为研究样本,提出一种增加先验知识的CNN-LSTM混合神经网络算法,建立炼化企业污水处理场COD排放浓度预测模型。结果表明,该模型既可发挥CNN较好刻画、提取局部特征信息的优势,又具有LSTM对连续时间序列数据较好继承性的特点,其均方根误差为22.3217、决定系数为0.8732,平均相对误差较LSTM网络构建的模型降低5.45%。 展开更多
关键词 炼化污水处理 混合神经网络(CNN-LSTM) COD浓度 污染排放预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部