期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
基于计算着色器的并行Delaunay三角剖分算法
1
作者 陈国军 李震烁 陈昊祯 《图学学报》 北大核心 2025年第1期159-169,共11页
Delaunay三角剖分是一种经典的计算几何算法,在众多领域中有着广泛地使用,随着实际需求的不断提高,现有的Delaunay三角剖分算法已不能满足大规模数据的需求,为此,提出了一种基于计算着色器的并行Delaunay三角剖分方法,该方法通过纹理缓... Delaunay三角剖分是一种经典的计算几何算法,在众多领域中有着广泛地使用,随着实际需求的不断提高,现有的Delaunay三角剖分算法已不能满足大规模数据的需求,为此,提出了一种基于计算着色器的并行Delaunay三角剖分方法,该方法通过纹理缓存将点集数据输入到计算着色器中,并利用计算着色器加速Delaunay三角剖分,同时在现有方法的基础上提出动态插入法解决点集在离散空间中的重映射问题。此外,为了能够让显存有限的GPU构建出远超其显存限制的Delaunay三角网,提出基于计算着色器的分区双向扫描算法,并将点集划分为多个子区域,然后通过扫描各个子区域的方式进行构网。实验结果表明:在相同运行环境下,基于计算着色器的方法与现有的方法相比缩短了构网时间。同时分区双向扫描算法很好地解决了GPU的显存瓶颈问题,能让显存有限的GPU构建出远超其显存容量的Delaunay三角网。 展开更多
关键词 DELAUNAY三角剖分 计算着色器 GPU 并行计算 VORONOI图
在线阅读 下载PDF
面向长尾分布的民众诉求层次多标签分类模型 被引量:1
2
作者 刘昕 杨大伟 +3 位作者 邵长恒 王海文 庞铭江 李艳茹 《计算机应用》 北大核心 2025年第1期82-89,共8页
接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响... 接诉即办是实现社会治理智能化、提高人民满意度的重要举措,其中精准分析民众诉求智能匹配工单处理部门,实现诉求的快速响应、高效办理尤为关键;然而,民众诉求数据中的诉求描述不清晰、类别混淆且比例失衡会导致诉求类别分析困难,影响了智能派单的效率与准确性。针对上述问题,提出编解码器结构的诉求层次多标签分类模型(HMCHotline)。首先,在文本编码器中引入诉求领域中的细粒度关键词先验知识以抑制噪声干扰,并融合诉求的时空信息提高语义特征的判别力;其次,利用标签层次结构生成具有层次与语义感知的标签嵌入,并构建基于Transformer模型的标签解码器,利用诉求的语义特征和标签嵌入进行标签解码;同时,在标签的层级依赖关系基础上引入动态标签表策略限制标签的解码范围,以解决标签不一致问题;最后,采用Softmax分组策略将样本数量相近的标签类别分为同组进行Softmax操作,从而缓解由标签长尾分布导致的分类准确率低的问题。在Hotline、RCV1(Reuters Corpus VolumeⅠ)-v2和WOS(Web Of Science)数据集上的实验结果表明,相较于层次感知的标签语义匹配网络(HiMatch),所提模型的Micro-F1分别提高了1.65、2.06和0.43个百分点,验证了模型的有效性。 展开更多
关键词 接诉即办 智能派单 层次多标签分类 先验知识 长尾分布 编解码器
在线阅读 下载PDF
基于双图神经网络的会话推荐算法
3
作者 李忠伟 吴金燠 +2 位作者 刘昕 周洁 李可一 《计算机工程与设计》 北大核心 2025年第1期23-29,共7页
针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力... 针对现有会话推荐算法缺乏对属性信息利用的问题,提出一种基于双图神经网络的会话推荐算法(SR-DGNN)。分别构建会话图和全局相似图学习项目的时序特征和内容特征表示,设计相似度图卷积网络(S-GCN)对全局相似图进行建模。设计基于注意力机制的融合策略对项目的特征表示进行聚合,获取会话的全局表示。综合考虑用户的长期和短期兴趣,预测用户偏好。在KKBOX和MIND两个数据集上进行了大量实验,实验结果表明,所提模型优于现有基准模型。 展开更多
关键词 推荐系统 会话推荐 图神经网络 会话图 全局相似图 相似度图卷积网络 注意力机制
在线阅读 下载PDF
融合动态加权图卷积的三维目标检测
4
作者 李宗民 戎光彩 +2 位作者 白云 徐畅 鲜世洋 《计算机科学》 北大核心 2025年第3期104-111,共8页
三维目标检测是自动驾驶中最关键的技术之一,基于激光雷达的三维目标检测通常在点云构建的场景中进行。目前的三维检测方法不能充分地利用点云的结构信息,这将导致目标物体的误检和漏检。为此,提出了基于动态加权图卷积的DEG R-CNN。首... 三维目标检测是自动驾驶中最关键的技术之一,基于激光雷达的三维目标检测通常在点云构建的场景中进行。目前的三维检测方法不能充分地利用点云的结构信息,这将导致目标物体的误检和漏检。为此,提出了基于动态加权图卷积的DEG R-CNN。首先,在RoI中对节点设置主邻点和次邻点,为目标物体构建点云的图结构,恢复物体的几何信息;然后,在图中利用Gaussian函数和一维卷积,高效地聚合点云的结构特征;最后,使用交叉注意力机制自适应地融合不同粒度的图像特征,为点云补充图像语义信息。在KITTI数据集上进行实验,验证了各个模块的有效性,三维目标检测的3D mAP达到88.80%,相比基线模型提高了1.22%。同时,对三维目标检测的结果进行了可视化,并对可视化结果进行了分析。 展开更多
关键词 点云 三维目标检测 激光雷达 多模态融合 自动驾驶
在线阅读 下载PDF
柱塞气举排水采气远程控制系统设计
5
作者 张晓东 石章宏 +1 位作者 宋继志 高绍姝 《实验技术与管理》 北大核心 2025年第6期182-187,共6页
为实现偏远地区致密气积液气井的无人值守与智能控制,该文以树莓派4B为核心,搭建了数据采集与远程监控硬件系统,并设计了电源管理模块、AD采样模块和电磁阀驱动模块;根据气井积液特征,提出了基于阈值和差分序列控制的无人监督控制策略... 为实现偏远地区致密气积液气井的无人值守与智能控制,该文以树莓派4B为核心,搭建了数据采集与远程监控硬件系统,并设计了电源管理模块、AD采样模块和电磁阀驱动模块;根据气井积液特征,提出了基于阈值和差分序列控制的无人监督控制策略。将柱塞气举远程监控系统部署在实际生产气井上,结果显示监控系统运行良好,延长了气井平稳运行时间,实现气井增产增收。 展开更多
关键词 致密气藏 柱塞气举 排水采气 智能系统
在线阅读 下载PDF
基于联邦学习的政务未诉先办主题挖掘模型
6
作者 刘昕 李艳茹 +3 位作者 张春营 王海文 杨大伟 赵庆齐 《计算机工程与设计》 北大核心 2025年第7期1980-1989,共10页
为挖掘本地诉求预判未来民生问题、借鉴其它城市的历史经验发现潜在问题,提出一种基于联邦学习的KANR-Fed UCTMWI模型进行联合主题挖掘。提出句嵌入方法KANR,通过附加关键词和选取相似样本并替换同义词增强样本质量,提升本地诉求嵌入语... 为挖掘本地诉求预判未来民生问题、借鉴其它城市的历史经验发现潜在问题,提出一种基于联邦学习的KANR-Fed UCTMWI模型进行联合主题挖掘。提出句嵌入方法KANR,通过附加关键词和选取相似样本并替换同义词增强样本质量,提升本地诉求嵌入语义表示;基于联邦学习构建KANR-Fed UCTMWI,设计特征融合模块,各地市根据全局词典构建词袋表示并与嵌入表示加权融合作为模型输入,提出基于词语影响力的重构损失函数,依据全局词语影响力值过滤与主题无关词语。实验结果表明,该方法提升了主题一致性与多样性,助力政府实现未诉先办。 展开更多
关键词 联邦学习 数据挖掘 对比学习 句嵌入 主题模型 公众诉求 未诉先办
在线阅读 下载PDF
地震属性驱动的条件生成对抗网络沉积微相模型构建
7
作者 刘昕 孙胜 +3 位作者 张立强 蔡明俊 鲁玉 卢文娟 《中国石油大学学报(自然科学版)》 北大核心 2025年第4期1-10,共10页
由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,... 由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,挖掘对砂地比参数关联性较强的参数;将优选地震属性图像作为卷积神经网络模型的输入,构建砂地比预测模型,可视化砂地比预测结果,与井相图作为联合约束条件,训练条件生成对抗网络,构建沉积微相生成模型,实现沉积微相的精确建模。应用本方法对东部某油田进行沉积微相建模研究。结果表明,条件生成对抗网络沉积微相模型能精确刻画复杂地质模式,井点吻合率达到94.1%。 展开更多
关键词 条件生成对抗网络 深度学习 沉积微相 砂地比 灰色关联 卷积神经网络
在线阅读 下载PDF
面向机器理解的可视化交互信息重构方法
8
作者 李昕 刘雯 +1 位作者 廖集秀 杨宗驰 《计算机应用》 北大核心 2025年第6期1748-1755,共8页
可视化重构技术旨在将图形转换为机器能够解析和操作的数据形式,为可视化的大规模分析、重用及检索等提供必备的基础信息;然而,现有的重构方法明显侧重于视觉信息的恢复,忽视了交互信息在数据分析和理解中发挥的关键作用。针对上述问题... 可视化重构技术旨在将图形转换为机器能够解析和操作的数据形式,为可视化的大规模分析、重用及检索等提供必备的基础信息;然而,现有的重构方法明显侧重于视觉信息的恢复,忽视了交互信息在数据分析和理解中发挥的关键作用。针对上述问题,提出一种面向机器理解的可视化交互信息重构方法。首先,形式化定义交互,将可视元素划分为不同的视觉组,采用自动化工具提取可视化图形的交互信息;其次,解耦交互与可视元素的关联,将交互分离为独立的实验变量,构建交互实体库;再次,制定规范的声明式语言,实现交互信息的查询;最后,设计迁移规则,基于可视元素匹配与自适应调整机制实现交互在不同可视化间的迁移适配。实验案例针对可视化问答、查询和迁移等面向机器理解的下游任务,结果显示增加交互信息能够使机器理解可视化交互的语义,从而拓展上述任务的应用范围。以上实验结果验证了所提方法能够使重构后的可视化图形通过融合动态交互信息而达成结构完整性。 展开更多
关键词 机器理解 交互 交互信息重构 可视化重构 数据分析
在线阅读 下载PDF
基于E-ASW-LA模型的井下振动模式识别
9
作者 刘昕 熊文婷 +3 位作者 孔华 李德 于子涵 李忠伟 《石油机械》 北大核心 2025年第9期10-19,共10页
准确识别井下振动模式可针对具体异常类型采取相应的解决方案。为此,提出一种基于E-ASW-LA模型的井下振动模式识别方法。该模型包括滑动窗口层、特征提取层以及分类识别层。根据预处理后的井下振动数据方差特征设置动态窗口,得到不同长... 准确识别井下振动模式可针对具体异常类型采取相应的解决方案。为此,提出一种基于E-ASW-LA模型的井下振动模式识别方法。该模型包括滑动窗口层、特征提取层以及分类识别层。根据预处理后的井下振动数据方差特征设置动态窗口,得到不同长度的窗口;在特征提取层,对窗口内样本利用经验模态分解得到能表征样本振动模式的特征,并经过PCA算法降维处理;然后,输入到LSTM神经网络中学习时序依赖关系,利用注意力机制对特征分配权重,进而根据加权后的特征预测其振动模式。试验结果表明,该模型能捕捉样本的关键特征,精准挖掘井下振动模式内在的规律,识别精度达95.53%。研究结论为优化钻井参数和作业流程提供了重要决策依据。 展开更多
关键词 井下振动模式识别 振动数据 滑动窗口 经验模态分解 注意力机制
在线阅读 下载PDF
应用MMTONet的迁移学习智能盐体分割方法
10
作者 李克文 范娅婷 +1 位作者 徐志峰 贾韶辉 《石油地球物理勘探》 北大核心 2025年第3期631-641,共11页
盐体是具有良好气密性的地质构造,有利于油气储存,实现精细化盐体的解释极为必要。然而,不同于断层,盐体的特征较为复杂且形态差异大,常规方法易导致混淆和误判。此外,基于数据驱动的盐体识别模型在实际数据集上的泛化能力较差,因此目... 盐体是具有良好气密性的地质构造,有利于油气储存,实现精细化盐体的解释极为必要。然而,不同于断层,盐体的特征较为复杂且形态差异大,常规方法易导致混淆和误判。此外,基于数据驱动的盐体识别模型在实际数据集上的泛化能力较差,因此目前在地震勘探中进行盐体的解释及可视化仍存在挑战。文章将盐体解释视为地震图像的语义分割问题,提出了基于迁移学习的上下文融合与混合注意力的智能盐体分割(Multi-path structure Mixed Attention and Transfer Optimized Net,MMTONet)方法。同时设计了一种基于盐体上下文特征融合模块,进而建立了改进注意力卷积混合的跳跃连接机制,以更好地弥补由下采样造成的信息损失,从而提高模型对盐体边界与高振幅噪声的像素级辨别能力。在此基础上,还设计了迁移学习的适配器微调策略,提升了模型在实际数据上的泛化能力。在地震数据集上的实验结果表明,MMTONet在提高分割精度和减少计算量、参数量方面均优于主流的语义分割方法。 展开更多
关键词 深度学习 盐体分割 地震图像 迁移学习 MMTONet 方法
在线阅读 下载PDF
全局形状关系约束的点云三维目标检测方法
11
作者 鲜世洋 李宗民 +5 位作者 公绪超 徐畅 张鹏 王文超 白云 戎光彩 《计算机工程与应用》 北大核心 2025年第18期132-141,共10页
基于投票的方法在室内三维目标检测任务中展现出巨大的潜力,其中投票直接决定了检测结果的质量。然而位于物体空间重叠处的种子点容易出现错误投票的问题,即映射到错误目标物体中心附近。鉴于这些种子点在几何表面上通常是连续的,引入... 基于投票的方法在室内三维目标检测任务中展现出巨大的潜力,其中投票直接决定了检测结果的质量。然而位于物体空间重叠处的种子点容易出现错误投票的问题,即映射到错误目标物体中心附近。鉴于这些种子点在几何表面上通常是连续的,引入形状关系来改善这一问题。具体来说,提出了形状关系提取模块,通过构建二维流形并基于流形上的欧氏距离来表征形状关系,然后通过矩阵乘法实现形状关系对点云的约束。为了获取几何表面连续性信息,设计了二叉树Transformer模块。经过形状关系约束后的点云,通过优化的Transformer网络捕获全局上下文,从而学习到物体的表面结构。采用ScanNet和SUN RGB-D数据集进行对比实验,结果表明文中算法在mAP@0.25指标上分别达到65.1%和62.7%,相较于基线方法分别有6.5和5个百分点的提升,对比目前最优方法分别提高了0.6和1.1个百分点。 展开更多
关键词 三维目标检测 点云 流形学习 TRANSFORMER 形状关系
在线阅读 下载PDF
基于全局指针限定窗口的中文医学实体识别
12
作者 仇家康 张卫山 +2 位作者 陈涛 张宝宇 朱宜昌 《计算机工程与设计》 北大核心 2025年第9期2586-2591,共6页
针对中文医学文本复杂嵌套实体难以处理的问题,提出一种基于全局指针限定窗口的中文医学实体识别模型。该模型通过医疗领域自适应预训练和新词挖掘,学习并适应医疗领域的特定数据分布。使用全局指针网络解码,并引入实体限定窗口,有效减... 针对中文医学文本复杂嵌套实体难以处理的问题,提出一种基于全局指针限定窗口的中文医学实体识别模型。该模型通过医疗领域自适应预训练和新词挖掘,学习并适应医疗领域的特定数据分布。使用全局指针网络解码,并引入实体限定窗口,有效减少长冗余负样本对模型训练的干扰。为降低模型对样本顺序的敏感性,采用最优自蒸馏策略,使模型学习到更高质量的知识和特征表示。实验结果表明,该模型在4个公开数据集上的性能均显著高于基线模型。 展开更多
关键词 实体识别 中文医学 模型蒸馏 文本挖掘 全局指针 神经网络 深度学习
在线阅读 下载PDF
基于鸟类迁徙关联要素数据的知识图谱构建 被引量:1
13
作者 李忠伟 李明轩 +1 位作者 李永 张文丰 《计算机工程与设计》 北大核心 2024年第12期3704-3711,共8页
为解决当前鸟类迁徙关联要素数据量繁杂,传统方法不足以高效处理这些数据并精准分析关联要素之间的关系等问题,提出一种鸟类迁徙领域知识图谱构建方法。通过构建本体,利用黄河三角洲生态保护和高质量发展研究院提供的鸟类迁徙数据以及... 为解决当前鸟类迁徙关联要素数据量繁杂,传统方法不足以高效处理这些数据并精准分析关联要素之间的关系等问题,提出一种鸟类迁徙领域知识图谱构建方法。通过构建本体,利用黄河三角洲生态保护和高质量发展研究院提供的鸟类迁徙数据以及互联网大量文本信息来构建鸟类迁徙实体语料库,设计一种基于RoBERTa-BiLSTM-CRF的鸟类迁徙关联要素实体识别方法进行知识的抽取,利用文本相似度技术进行知识融合,将数据存入图数据库Neo4j中。实验结果表明,所提方法简单高效,构建的知识图谱扩充了鸟类迁徙领域的关联要素信息,是知识图谱技术在生态保护领域的应用与探索。 展开更多
关键词 鸟类迁徙 关联要素 实体识别 关系抽取 知识融合 知识图谱 图数据库
在线阅读 下载PDF
基于多模态数据融合的改进中尺度涡检测模型 被引量:1
14
作者 李忠伟 刘格格 +2 位作者 李永 徐斌 宫凯旋 《海洋预报》 CSCD 北大核心 2024年第2期53-62,共10页
提出一种基于多模态数据融合的改进中尺度涡检测模型。该模型以海平面高度数据为基础,首次将融合表层海温数据扩展为融合多深度层海温数据;将海温数据的深度层作为通道,嵌入通道注意力机制,使得模型能够关注于海水温度数据中最具有区分... 提出一种基于多模态数据融合的改进中尺度涡检测模型。该模型以海平面高度数据为基础,首次将融合表层海温数据扩展为融合多深度层海温数据;将海温数据的深度层作为通道,嵌入通道注意力机制,使得模型能够关注于海水温度数据中最具有区分度的深度层;模型在编码及解码过程中采用残差学习单元,在加深网络深度的同时,更好地拟合激活函数,缓解训练问题,以提高模型的检测准确率。以中国南海部分海域为例开展实验验证,结果表明该中尺度涡检测模型准确率达到93.62%,模型具备有效性和可靠性。 展开更多
关键词 中尺度涡 多模态数据 通道注意力 残差学习单元 深度学习
在线阅读 下载PDF
融合知识推理与相似度检索的民众诉求大模型构建与应用 被引量:2
15
作者 刘昕 高会泉 +3 位作者 邵长恒 陈子良 卢文娟 杨会如 《计算机科学与探索》 CSCD 北大核心 2024年第11期2940-2953,共14页
高效回复民众诉求是实现智能化管理、提升民众满意度的必要措施,将智能问答应用于民众诉求能有效节约人力和时间资源。然而,智能问答中基于规则和检索的模型依赖预设知识,当诉求超出预设知识范围时无法提供有效回复,在处理多轮对话时也... 高效回复民众诉求是实现智能化管理、提升民众满意度的必要措施,将智能问答应用于民众诉求能有效节约人力和时间资源。然而,智能问答中基于规则和检索的模型依赖预设知识,当诉求超出预设知识范围时无法提供有效回复,在处理多轮对话时也无法保持对话连贯性。现有的大语言模型可以和用户流畅对话,但通用大语言模型缺乏诉求领域知识。由于训练数据中问答对的信息没有覆盖回答用户问题所需要的知识,导致通用大语言模型生成错误回复或答非所问,产生幻觉。针对上述问题,构建了面向民众诉求领域的智能问答大语言模型(PC-LLM)。设计基于BERT-BiLSTM-CRF的实体关系抽取模型获得诉求工单中实体及其关系,进而构建诉求知识图谱,使用BERT模型对诉求工单向量化并构建诉求工单向量索引库;回复生成阶段,抽取用户诉求的实体和关系,在诉求知识图谱中通过实体链接进行知识推理,获取潜在关系提示,同时在诉求工单向量索引库内对诉求进行快速检索,获取相似诉求并构建相似诉求提示;将潜在关系提示、相似诉求提示与用户诉求融合形成综合提示,引导大语言模型生成准确的回复。实验分析显示,该大语言模型在诉求数据集中的表现明显优于ChatGPT4o、文心一言、通义千问等大语言模型。 展开更多
关键词 大语言模型 知识推理 相似度检索 民众诉求 知识图谱
在线阅读 下载PDF
基于可变生成概率和多差分柯西变异的均衡优化算法 被引量:1
16
作者 李克文 牛小楠 +1 位作者 李国庆 崔雪丽 《计算机科学》 CSCD 北大核心 2024年第3期214-225,共12页
针对标准均衡优化算法(EO)存在全局搜索和局部搜索的平衡能力不足以及易陷入局部最优的问题,提出了一种基于可变生成概率和多差分柯西变异的均衡优化算法(Variable generation probability and multi-difference Cauchy variation equil... 针对标准均衡优化算法(EO)存在全局搜索和局部搜索的平衡能力不足以及易陷入局部最优的问题,提出了一种基于可变生成概率和多差分柯西变异的均衡优化算法(Variable generation probability and multi-difference Cauchy variation equilib-rium optimization algorithm,VDEO)。首先,结合Tent混沌映射增加初始化种群的多样性,为寻优提供基础;其次,引入可变的生成概率代替原始的固定值,使算法在迭代前期增加全局搜索能力,后期关注求解精度,以提升全局搜索和局部搜索的平衡能力;最后,融合多种差分策略和柯西变异帮助寻优过程跳出局部最优。针对包含单峰、多峰和固定维多峰在内的15个基准测试函数和CEC2022测试函数,将VDEO在多种维数下与EO,GWO,WOA,SCA,MFO,AOA,AVOA,BWO,AHA,POA这10个启发式算法进行仿真对比实验,并对基准测试函数的实验结果进行Wilcoxon秩和检验,实验结果表明,VDEO实现了更好的全局搜索和局部搜索的平衡,并具有更好的跳出局部最优的能力以及更高的收敛精度。 展开更多
关键词 均衡优化算法 混沌映射 生成概率 差分变异 柯西变异
在线阅读 下载PDF
基于AHRFaultSegNet深度学习网络的地震数据断层自动识别 被引量:1
17
作者 李克文 李文韬 +2 位作者 窦一民 朱信源 阳致煊 《石油地球物理勘探》 EI CSCD 北大核心 2024年第6期1225-1234,共10页
断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基... 断层识别是地震数据解释的重要环节之一。深度学习技术的发展有效提高了断层自动识别的效率和准确性。然而,目前在断层的自动识别任务中,如何准确捕捉断层细微结构并有效抵抗噪声干扰仍然是一个具有挑战性的问题。为此,在HRNet网络的基础上,构建了一种基于解耦自注意力机制的高分辨率断层识别网络模型AHRFaultSegNet。对于自注意力机制解耦,结合空间注意力和通道注意力,代替HRNet中并行传播的卷积层,在减少传统自注意力机制计算量的同时,模型可以在全局范围内计算输入特征的相关性,更准确地建模非局部特征;对解耦自注意力使用残差连接来保留原始特征,在加速模型训练的同时,使模型能够更好地保持细节信息。实验结果表明,所提出的网络模型在Dice、Fmeasure、IoU、Precision、Recall等性能评价指标上均优于其他常见的断层自动识别网络模型。通过对合成地震数据与实际地震数据等进行测试,证明了该方法对断层细微结构具有良好的识别效果并且具有良好的抗噪能力。 展开更多
关键词 断层检测识别 深度学习 解耦自注意力机制 残差连接
在线阅读 下载PDF
基于多样化标签矩阵的医学影像报告生成
18
作者 张俊三 程铭 +2 位作者 沈秀轩 刘玉雪 王雷全 《计算机科学》 CSCD 北大核心 2024年第8期200-208,共9页
医学影像在医学诊断中具有重要作用,而准确描述的文本报告对于理解图像以及后续疾病诊断是必不可少的。目前在医学影像报告生成领域,基于模式化方法生成规范的文本报告成为近年的研究热点。但正负样本数量差距较大导致的数据偏差问题,... 医学影像在医学诊断中具有重要作用,而准确描述的文本报告对于理解图像以及后续疾病诊断是必不可少的。目前在医学影像报告生成领域,基于模式化方法生成规范的文本报告成为近年的研究热点。但正负样本数量差距较大导致的数据偏差问题,使得生成的报告内容普遍倾向于描述正常状况,难以准确捕捉异常信息。为解决这一问题,提出了一种基于多样化标签矩阵的医学报告生成方法,可以对不同的疾病进行差异化学习,生成多样化的医疗报告;设计文本-矩阵特征损失函数,优化多样化标签矩阵;增加特征交叉模块改进Transformer网络,加强图像与文本的映射,提升疾病描述的准确性。在IU-X-Ray和MIMIC-CXR两个数据集上进行实验,实验结果表明,与目前的主流方法相比,所提方法在BLEU,METEOR等多个指标上取得了最优的效果。 展开更多
关键词 深度学习 医学影像报告生成 注意力机制 图像-文本生成 多模态
在线阅读 下载PDF
基于深度学习的区块链蜜罐陷阱合约检测 被引量:11
19
作者 张红霞 王琪 +1 位作者 王登岳 王奔 《通信学报》 EI CSCD 北大核心 2022年第1期194-202,共9页
针对当前检测方法准确率不高以及模型泛化性较差的问题,提出了基于KOLSTM深度学习模型的蜜罐陷阱合约检测方法。首先,通过分析蜜罐陷阱合约的特点,提出了关键操作码的概念,并设计了可用于选取智能合约中关键操作码的关键词提取方法;其次... 针对当前检测方法准确率不高以及模型泛化性较差的问题,提出了基于KOLSTM深度学习模型的蜜罐陷阱合约检测方法。首先,通过分析蜜罐陷阱合约的特点,提出了关键操作码的概念,并设计了可用于选取智能合约中关键操作码的关键词提取方法;其次,在传统的LSTM模型中加入关键操作码权重机制,构建了可以同时捕获蜜罐陷阱合约中隐藏的序列特征以及关键操作码特征的KOLSTM模型。最后,通过实验表明,该模型具有较高的识别精确率,在二分类和多分类检测场景下的F值较LightGBM模型分别提升2.39%与19.54%。 展开更多
关键词 区块链 以太坊 智能合约 蜜罐陷阱合约 深度学习
在线阅读 下载PDF
基于区块链辅助的半中心化联邦学习框架 被引量:1
20
作者 施宏建 马汝辉 +1 位作者 张卫山 管海兵 《计算机研究与发展》 EI CSCD 北大核心 2023年第11期2567-2582,共16页
随着网络技术的发展,如何构建可信任的新一代信息管理系统成为了必要需求,区块链技术提供了去中心化、透明、不可篡改的可信分布式底座.随着人工智能技术的发展,网络数据计算领域出现了数据孤岛问题,各开发者之间的不信任导致难以联合... 随着网络技术的发展,如何构建可信任的新一代信息管理系统成为了必要需求,区块链技术提供了去中心化、透明、不可篡改的可信分布式底座.随着人工智能技术的发展,网络数据计算领域出现了数据孤岛问题,各开发者之间的不信任导致难以联合利用各方数据进行协同训练,联邦学习虽然提供了数据隐私性保障,但是服务器端安全性仍存在隐患.传统方法通过将联邦学习框架中的服务器端替换为区块链系统以提供不可篡改的全局模型数据库,但是这种方式并未利用物联网场景中所有可用网络连接,并缺少了针对联邦学习任务的区块结构设计.提出了基于区块链辅助的半中心化联邦学习框架,从物联网场景需求出发,构建了半中心化的物联网场景,利用了所有可信的网络连接以支撑联邦学习任务,同时通过区块链技术为不可信、距离远的客户端之间构建了不可篡改的模型库,相比传统区块链联邦学习框架有更小的通信开销和更好的普适性.所提框架包含两大设计,半中心化的联邦学习框架通过客户端之间的可信连接减少聚合所带来的通信开销,并通过区块链存储客户端模型以便于距离较远或者相互不可信的客户端进行聚合;设计了针对联邦学习任务的区块链区块,使区块链能够支持底层联邦学习训练的需求.实验证明所提框架在多个数据集上相比传统联邦学习算法有至少8%的准确率提升,并大幅度减少了客户端之间相互等待带来的通信开销,为实际场景下的区块链联邦学习系统部署提供了指导. 展开更多
关键词 物联网 区块链系统 联邦学习 半中心化架构 模型聚合
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部