期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LoRa指纹的室内定位算法 被引量:4
1
作者 王力 陈宇翔 孙健 《计算机应用与软件》 北大核心 2020年第1期144-150,共7页
在基于LoRa的室内定位研究中,提出一种基于LoRa指纹和支持向量回归(SVR)的室内定位算法。针对传统基于无线信号RSSI指纹和SVR室内定位算法定位精度不高问题,从两个方面进行改进:在指纹特征方面,增加LoRa测距指纹,提高指纹稳定性;在指纹... 在基于LoRa的室内定位研究中,提出一种基于LoRa指纹和支持向量回归(SVR)的室内定位算法。针对传统基于无线信号RSSI指纹和SVR室内定位算法定位精度不高问题,从两个方面进行改进:在指纹特征方面,增加LoRa测距指纹,提高指纹稳定性;在指纹数据库建立和在线定位过程中,分别采用高斯滤波和中位数滤波来对指纹进行预处理,消除指纹的粗大误差。实验结果显示:1 m以内的定位误差的累积概率为78.5%,3 m以内的定位误差的累积概率为90%。增加LoRa测距指纹之后定位精度相比之前提高了40%;增加了高斯滤波与中位数滤波预处理后定位精度较传统的支持向量回归算法提高了38%。两个方面改进之后定位精度总体提高63%,证明了该算法的两个改进是有效的。 展开更多
关键词 LoRa 指纹定位 室内定位 支持向量回归
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部