期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于交叉注意力的多源数据融合的气体泄漏检测
1
作者 王新颖 杨阳 +2 位作者 田豪杰 陈俨 张敏 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期91-97,共7页
为解决单一传感器在管道气体泄漏检测时容易出现误报、漏报的问题,及时预警并反馈泄漏状况,提出一种基于交叉注意力的多源数据融合管道泄漏检测方法。首先,利用预训练的ShuffleNetV2模型提取热像仪数据的空间特征;然后,结合一维卷积神... 为解决单一传感器在管道气体泄漏检测时容易出现误报、漏报的问题,及时预警并反馈泄漏状况,提出一种基于交叉注意力的多源数据融合管道泄漏检测方法。首先,利用预训练的ShuffleNetV2模型提取热像仪数据的空间特征;然后,结合一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU),构建1DCNN-BiGRU模型,以提取气体传感器数据的时序特征;最后,运用交叉注意力捕获数据的时空关联性得到2个数据源的特征表示,通过残差方式进行特征连接后输入到分类层中,得到识别结果。结果表明:所构建的多源数据融合模型(SCGA)对气体识别准确率为99.22%,损失值在0~0.04内波动;与仅使用气体传感器数据的支持向量机(SVM)、1DCNN、BiGRU模型相比,准确率至少提升4.12%;与仅使用热图像传感器数据的MobileNetV3、ShuffleNetV2、ResNet18模型相比,准确率至少提升1.14%;与将时序特征和空间特征直接拼接的多源数据融合模型(SCG)相比,准确率提升1%。SCGA模型对气体识别具有较高精度。 展开更多
关键词 交叉注意力 多源数据融合 气体泄漏检测 卷积神经网络(CNN) 双向门控循环单元(BiGRU)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部