雷达脉冲压缩希望具有超低距离旁瓣的特征,线性调频信号采用加窗方式可达到约-35 d B的距离旁瓣电平。基于超低旁瓣电平信号设计方法,在不考虑信噪比损失条件下,提出了一种新的超低旁瓣的脉冲压缩方法,基本思想是针对给定线性调频信号,...雷达脉冲压缩希望具有超低距离旁瓣的特征,线性调频信号采用加窗方式可达到约-35 d B的距离旁瓣电平。基于超低旁瓣电平信号设计方法,在不考虑信噪比损失条件下,提出了一种新的超低旁瓣的脉冲压缩方法,基本思想是针对给定线性调频信号,频率滤波权值采用超低频旁瓣频域信号与线性调频信号频域的比值,可以将接收端旁瓣电平输出最低到-120 d B。同时,从理论上和数值结果中分析了信噪比损失、延迟敏感性等问题。展开更多
针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-...针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法,在两棵搜索树的扩展过程中,通过判断搜索树与狭窄通道路径树的位置关系,将狭窄通道路径树添加到搜索树上,实现搜索树在狭窄通道中的快速扩展,减少两棵搜索树的无用扩展,提升航路树生成的速度。仿真结果表明,该方法能够解决无人机在存在狭窄通道的复杂环境中进行快速有效航路规划的问题。展开更多
文摘雷达脉冲压缩希望具有超低距离旁瓣的特征,线性调频信号采用加窗方式可达到约-35 d B的距离旁瓣电平。基于超低旁瓣电平信号设计方法,在不考虑信噪比损失条件下,提出了一种新的超低旁瓣的脉冲压缩方法,基本思想是针对给定线性调频信号,频率滤波权值采用超低频旁瓣频域信号与线性调频信号频域的比值,可以将接收端旁瓣电平输出最低到-120 d B。同时,从理论上和数值结果中分析了信噪比损失、延迟敏感性等问题。
文摘针对无人机在障碍间存在狭窄通道的城市环境中进行低空航路规划的问题,根据障碍之间的空间几何关系确定障碍之间的狭窄通道,再综合所有狭窄通道生成复杂环境中的狭窄通道路径树。设计了结合狭窄通道路径树的双向快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法,在两棵搜索树的扩展过程中,通过判断搜索树与狭窄通道路径树的位置关系,将狭窄通道路径树添加到搜索树上,实现搜索树在狭窄通道中的快速扩展,减少两棵搜索树的无用扩展,提升航路树生成的速度。仿真结果表明,该方法能够解决无人机在存在狭窄通道的复杂环境中进行快速有效航路规划的问题。