期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习的多源威胁情报质量评价方法 被引量:11
1
作者 刘汉生 唐洪玉 +3 位作者 薄明霞 牛剑锋 李天博 李玲晓 《电信科学》 2020年第1期119-126,共8页
在多源威胁情报收集过程中,由于存在数据价值密度低、情报重复度高、失效时间快等问题,情报中心难以对海量情报数据做出科学决策。针对上述问题,提出一种基于机器学习的多源威胁情报质量评价方法。首先基于标准情报格式,设计了一套多源... 在多源威胁情报收集过程中,由于存在数据价值密度低、情报重复度高、失效时间快等问题,情报中心难以对海量情报数据做出科学决策。针对上述问题,提出一种基于机器学习的多源威胁情报质量评价方法。首先基于标准情报格式,设计了一套多源情报数据标准化流程;其次,针对情报数据的特点,分别从情报来源、情报内容、活跃周期、黑名单库匹配程度4个维度提取特征作为评估情报质量的依据;然后针对提取的特征编码,设计了一套基于深度神经网络算法和Softmax分类器的情报质量评价模型,并利用反向误差传播算法最小化重构误差;最后根据2000条开源已标注样本数据,利用K折交叉验证法对模型进行验证,得到了平均91.37%的宏查准率和84.89%的宏查全率,为多源威胁情报质量评估提供借鉴和参考。 展开更多
关键词 信息安全 威胁情报 质量评价 深度神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部