期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
海河流域水资源开发利用阈值研究 被引量:13
1
作者 秦长海 甘泓 +1 位作者 汪林 王琳 《水科学进展》 EI CAS CSCD 北大核心 2013年第2期220-227,共8页
针对中国水资源开发利用程度较高等问题,在水资源耗减、水环境退化等价值量核算方面开展研究,提出合理的水资源开发利用阈值。以联合国综合环境经济核算体系为基础,从水资源开发利用带来的正面效益和负面效益两方面入手,通过构建水资源... 针对中国水资源开发利用程度较高等问题,在水资源耗减、水环境退化等价值量核算方面开展研究,提出合理的水资源开发利用阈值。以联合国综合环境经济核算体系为基础,从水资源开发利用带来的正面效益和负面效益两方面入手,通过构建水资源环境经济效益评价模型(EMW),分析经水资源耗减和水环境退化价值调整后国内产出(WEDP),并从社会福利最大化角度,提出将WEDP最大化目标下的用水量作为合理的水资源开发利用阈值。经评价,海河流域现状和2020年合理的水资源开发利用阈值分别为292亿m3和287亿m3。结果表明,海河流域已经超过了其开发利用阈值,对水生态环境系统造成了负面影响。 展开更多
关键词 水资源 阈值 耗减价值 综合环境经济核算 海河流域
在线阅读 下载PDF
Rapid urban flood forecasting based on cellular automata and deep learning
2
作者 BAI Bing DONG Fei +1 位作者 LI Chuanqi WANG Wei 《水利水电技术(中英文)》 北大核心 2024年第12期17-28,共12页
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d... [Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique. 展开更多
关键词 urban flooding flood-prone location cellular automata deep learning convolutional neural network rapid forecasting
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部