模式分辨率对气候模式的模拟效果具有重要影响。然而,当前模式开发对于垂直分辨率的重视不够。以ENSO(厄尔尼诺-南方涛动)遥相关为例,利用CESM(Community Earth System Model)模式,探究不同模式垂直分辨率设置下模式模拟的ENSO对平流层...模式分辨率对气候模式的模拟效果具有重要影响。然而,当前模式开发对于垂直分辨率的重视不够。以ENSO(厄尔尼诺-南方涛动)遥相关为例,利用CESM(Community Earth System Model)模式,探究不同模式垂直分辨率设置下模式模拟的ENSO对平流层、对流层影响的差异,评估模式垂直分辨率在气候模拟中的重要性。结果表明,提高垂直分辨率可以显著改进模式对ENSO遥相关的模拟能力。以ECMWF(European Centre for Medium-Range Weather Forecasts)第五代再分析数据集(ERA5)为参照,ENSO对纬向平均温度的影响在北半球中高纬地区冬季呈现出“负正负”的三极子模态。CESM默认的垂直分辨率设置(L66)不能模拟出这一模态,而提高模式垂直分辨率(L103)后则可以较好地模拟出这个模态。对于水平分布而言,L66模拟的ENSO在对流层的信号与再分析资料相比明显偏强,L103则可以显著改善。同时,L103对ENSO影响平流层的模拟效果也比L66有所改善。进一步分析发现,L103模拟的行星波从对流层向平流层的传播更强,更接近再分析资料。提高垂直分辨率可以改善模式对大气波活动以及平流层-对流层动力耦合的模拟,重视模式的研发。展开更多
为了考察辅助变量、时间滞后变量设置的重要性和神经网络中嵌入层对分类变量处理的有效性,利用2015年1月15日-2020年12月31日欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)高分辨率模式(high resolu...为了考察辅助变量、时间滞后变量设置的重要性和神经网络中嵌入层对分类变量处理的有效性,利用2015年1月15日-2020年12月31日欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)高分辨率模式(high resolution,HRES)输出产品及中国2238个国家级地面气象站基本气象要素数据集,在全连接神经网络基础上设计4个试验,构建24 h最高气温预报神经网络模型。结果表明:加入辅助变量、时间滞后变量的特征和带有嵌入层的全连接神经网络结构的深度学习神经网络模型对HRES日最高气温预报误差均有订正效果,均方根误差降低29.72%~47.82%,温度预报准确率提高16.67%~38.89%。加入经过嵌入层处理的辅助变量后,可显著提高青藏高原中南部和西南地区东部的平均绝对偏差不超过2℃的正技巧站点比例(比仅用HRES预报因子建模分别提高21.74%和14.17%),在此基础上加入时间滞后变量显著提高上述两个地区的平均绝对偏差不超过2℃的正技巧站点比例(比仅用HRES预报因子建模分别提高40.98%和20.33%),且预报性能更加稳定。展开更多
文摘模式分辨率对气候模式的模拟效果具有重要影响。然而,当前模式开发对于垂直分辨率的重视不够。以ENSO(厄尔尼诺-南方涛动)遥相关为例,利用CESM(Community Earth System Model)模式,探究不同模式垂直分辨率设置下模式模拟的ENSO对平流层、对流层影响的差异,评估模式垂直分辨率在气候模拟中的重要性。结果表明,提高垂直分辨率可以显著改进模式对ENSO遥相关的模拟能力。以ECMWF(European Centre for Medium-Range Weather Forecasts)第五代再分析数据集(ERA5)为参照,ENSO对纬向平均温度的影响在北半球中高纬地区冬季呈现出“负正负”的三极子模态。CESM默认的垂直分辨率设置(L66)不能模拟出这一模态,而提高模式垂直分辨率(L103)后则可以较好地模拟出这个模态。对于水平分布而言,L66模拟的ENSO在对流层的信号与再分析资料相比明显偏强,L103则可以显著改善。同时,L103对ENSO影响平流层的模拟效果也比L66有所改善。进一步分析发现,L103模拟的行星波从对流层向平流层的传播更强,更接近再分析资料。提高垂直分辨率可以改善模式对大气波活动以及平流层-对流层动力耦合的模拟,重视模式的研发。
文摘为了考察辅助变量、时间滞后变量设置的重要性和神经网络中嵌入层对分类变量处理的有效性,利用2015年1月15日-2020年12月31日欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)高分辨率模式(high resolution,HRES)输出产品及中国2238个国家级地面气象站基本气象要素数据集,在全连接神经网络基础上设计4个试验,构建24 h最高气温预报神经网络模型。结果表明:加入辅助变量、时间滞后变量的特征和带有嵌入层的全连接神经网络结构的深度学习神经网络模型对HRES日最高气温预报误差均有订正效果,均方根误差降低29.72%~47.82%,温度预报准确率提高16.67%~38.89%。加入经过嵌入层处理的辅助变量后,可显著提高青藏高原中南部和西南地区东部的平均绝对偏差不超过2℃的正技巧站点比例(比仅用HRES预报因子建模分别提高21.74%和14.17%),在此基础上加入时间滞后变量显著提高上述两个地区的平均绝对偏差不超过2℃的正技巧站点比例(比仅用HRES预报因子建模分别提高40.98%和20.33%),且预报性能更加稳定。