本文基于2014~2016年华南前汛期(4~6月)广东省(简称粤)阳江市海陵岛风廓线雷达观测资料、地面自动观测站降水资料和ERA5再分析数据集,分析了粤西海岸低空急流的结构特征、日变化特征及其形成机制,并探讨了不同强度边界层低空急流对广东...本文基于2014~2016年华南前汛期(4~6月)广东省(简称粤)阳江市海陵岛风廓线雷达观测资料、地面自动观测站降水资料和ERA5再分析数据集,分析了粤西海岸低空急流的结构特征、日变化特征及其形成机制,并探讨了不同强度边界层低空急流对广东三个关键区域的地形降水时空分布影响。研究表明:(1)基于本文提出的低空急流四个等级判定标准,低空急流累计发生概率为21.2%,其中以1~3级低空急流为主,4级低空急流较为罕见。大部分(77.1%)低空急流的风速不超过14 m s^(-1),84.7%的低空急流风向为西南风,低空急流中心最大风速下方的风速垂直切变大多介于(5~25)×10^(-3)s^(-1)。低空急流最大风速出现的高度呈现出双峰结构,大部分低空急流出现在1 km以内的边界层。(2)天气尺度系统相关的低空急流日内发生频数表现为夜间单峰结构,而边界层急流发生频数为昼夜双峰结构。边界层急流夜间主峰值出现在上半夜至早晨,与局地海陆风触发的惯性振荡机制有关,白天次峰值主要出现在下午。近地面附近的低纬亚洲大陆低压与西北太平洋洋面高压两个高低值系统间的压力差对不同强度边界层急流形成起着关键的作用,白天大陆低压发展是强边界层急流午后峰值形成的主要原因。(3)边界层急流对广东地形降水分布和强度的影响机制复杂。粤中北部内陆和粤东沿海区域均以大尺度山脉迎风坡地形降水为主,边界层急流越强,地形降水越强;粤东沿海强地形降水落区稳定,而粤中北部内陆地形降水中心随边界层急流增强而西北移。粤西海岸带中小尺度地形的迎(背)风坡及尾流辐合区均可产生明显地形降水,强地形降水需在合适的低空入流风速背景下发生。(4)在地形降水日变化方面,粤中北部内陆区域降水在不同强度边界层急流影响下均出现了下午和早晨双峰结构,下午峰强度约为早晨峰的两倍,双峰强度随急流加强而增大;粤东沿海区域降水随着急流强度增强,降水由日内双峰结构演变为三峰结构;粤西海岸区域降水在较弱急流影响下为双峰,在4级强急流影响下为三峰结构,而在3级中等偏强急流影响下表现为中午单峰结构。展开更多
相较于暴雨这种日尺度强降水,短时强降水(≥20 mm h^(−1))是造成山洪滑坡与城市内涝等灾害更为直接的因素。本文利用地面气象观测站和ERA5再分析数据,重点研究南海季风爆发前后珠江三角洲地区(简称珠三角)短时强降水的时空演变特征,并...相较于暴雨这种日尺度强降水,短时强降水(≥20 mm h^(−1))是造成山洪滑坡与城市内涝等灾害更为直接的因素。本文利用地面气象观测站和ERA5再分析数据,重点研究南海季风爆发前后珠江三角洲地区(简称珠三角)短时强降水的时空演变特征,并探索了短时强降水在季风爆发前后特征差异的可能成因。研究表明:(1)相较于季风爆发前,珠三角地区季风爆发后的降水明显增多,其中短时强降水贡献的比例显著增加。对短时强降水本身而言,区域平均强度以及极端性在季风爆发前后差异总体较小,但短时强降水频率在季风爆发后增加70%。(2)短时强降水高发区主要集中在珠三角东北部和珠江口西侧沿海,季风爆发后上述两个地区的频次增多最明显。短时强降水频率由季风爆发前的单峰型(下午)转为季风爆发后的双峰型(早晨与下午)。(3)短时强降水具有明显的区域性变化特征,短时强降水在季风爆发后的平均雨强和极端性在珠江口西侧沿海较内陆地区明显增强,其频次峰值时间在沿海地区从季风爆发前的午后转为季风爆发后的早晨,内陆地区在季风爆发前后均集中在下午。(4)季风爆发后,短时强降水期间的低层环境水汽超过同期气候态水平的16%。充沛的水汽在夜间在季风加速作用下被输送至沿海,并与陆风作用增强了辐合,这解释了沿海短时强降水的在季风爆发前后频次峰值时间转换现象。(5)相较于季风爆发前,季风爆发后珠三角短时强降水频率与低层水汽通量的相关性明显升高。珠三角沿海地区夜间—早晨短时强降水的增多与中低层风场结构改变造成的动力强迫有关。内陆地区季风爆发前后短时强降水与环境热力和不稳定条件关系更大。这些结果有助于我们更好地了解珠三角地区在季风爆发前后短时强降水的时空分布特征和理解其产生机制。展开更多
文摘本文基于2014~2016年华南前汛期(4~6月)广东省(简称粤)阳江市海陵岛风廓线雷达观测资料、地面自动观测站降水资料和ERA5再分析数据集,分析了粤西海岸低空急流的结构特征、日变化特征及其形成机制,并探讨了不同强度边界层低空急流对广东三个关键区域的地形降水时空分布影响。研究表明:(1)基于本文提出的低空急流四个等级判定标准,低空急流累计发生概率为21.2%,其中以1~3级低空急流为主,4级低空急流较为罕见。大部分(77.1%)低空急流的风速不超过14 m s^(-1),84.7%的低空急流风向为西南风,低空急流中心最大风速下方的风速垂直切变大多介于(5~25)×10^(-3)s^(-1)。低空急流最大风速出现的高度呈现出双峰结构,大部分低空急流出现在1 km以内的边界层。(2)天气尺度系统相关的低空急流日内发生频数表现为夜间单峰结构,而边界层急流发生频数为昼夜双峰结构。边界层急流夜间主峰值出现在上半夜至早晨,与局地海陆风触发的惯性振荡机制有关,白天次峰值主要出现在下午。近地面附近的低纬亚洲大陆低压与西北太平洋洋面高压两个高低值系统间的压力差对不同强度边界层急流形成起着关键的作用,白天大陆低压发展是强边界层急流午后峰值形成的主要原因。(3)边界层急流对广东地形降水分布和强度的影响机制复杂。粤中北部内陆和粤东沿海区域均以大尺度山脉迎风坡地形降水为主,边界层急流越强,地形降水越强;粤东沿海强地形降水落区稳定,而粤中北部内陆地形降水中心随边界层急流增强而西北移。粤西海岸带中小尺度地形的迎(背)风坡及尾流辐合区均可产生明显地形降水,强地形降水需在合适的低空入流风速背景下发生。(4)在地形降水日变化方面,粤中北部内陆区域降水在不同强度边界层急流影响下均出现了下午和早晨双峰结构,下午峰强度约为早晨峰的两倍,双峰强度随急流加强而增大;粤东沿海区域降水随着急流强度增强,降水由日内双峰结构演变为三峰结构;粤西海岸区域降水在较弱急流影响下为双峰,在4级强急流影响下为三峰结构,而在3级中等偏强急流影响下表现为中午单峰结构。
文摘相较于暴雨这种日尺度强降水,短时强降水(≥20 mm h^(−1))是造成山洪滑坡与城市内涝等灾害更为直接的因素。本文利用地面气象观测站和ERA5再分析数据,重点研究南海季风爆发前后珠江三角洲地区(简称珠三角)短时强降水的时空演变特征,并探索了短时强降水在季风爆发前后特征差异的可能成因。研究表明:(1)相较于季风爆发前,珠三角地区季风爆发后的降水明显增多,其中短时强降水贡献的比例显著增加。对短时强降水本身而言,区域平均强度以及极端性在季风爆发前后差异总体较小,但短时强降水频率在季风爆发后增加70%。(2)短时强降水高发区主要集中在珠三角东北部和珠江口西侧沿海,季风爆发后上述两个地区的频次增多最明显。短时强降水频率由季风爆发前的单峰型(下午)转为季风爆发后的双峰型(早晨与下午)。(3)短时强降水具有明显的区域性变化特征,短时强降水在季风爆发后的平均雨强和极端性在珠江口西侧沿海较内陆地区明显增强,其频次峰值时间在沿海地区从季风爆发前的午后转为季风爆发后的早晨,内陆地区在季风爆发前后均集中在下午。(4)季风爆发后,短时强降水期间的低层环境水汽超过同期气候态水平的16%。充沛的水汽在夜间在季风加速作用下被输送至沿海,并与陆风作用增强了辐合,这解释了沿海短时强降水的在季风爆发前后频次峰值时间转换现象。(5)相较于季风爆发前,季风爆发后珠三角短时强降水频率与低层水汽通量的相关性明显升高。珠三角沿海地区夜间—早晨短时强降水的增多与中低层风场结构改变造成的动力强迫有关。内陆地区季风爆发前后短时强降水与环境热力和不稳定条件关系更大。这些结果有助于我们更好地了解珠三角地区在季风爆发前后短时强降水的时空分布特征和理解其产生机制。