期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的月平均2 m气温订正方法
1
作者 方巍 王冰轮 《热带气象学报》 CSCD 北大核心 2024年第6期906-917,共12页
作为减少短期气候预测误差的技术,数据订正成为了重要的研究方向。而深度学习作为一种新兴方法已经应用到数据订正技术中,其中常用的模型是U-Net,但它存在不可避免的缺陷。第一,U-Net基于卷积神经网络,但是受限于卷积神经网络的小感受野... 作为减少短期气候预测误差的技术,数据订正成为了重要的研究方向。而深度学习作为一种新兴方法已经应用到数据订正技术中,其中常用的模型是U-Net,但它存在不可避免的缺陷。第一,U-Net基于卷积神经网络,但是受限于卷积神经网络的小感受野,这导致U-Net不能从全局的角度学习空间特征;第二,U-Net的下采样操作容易丢失图像细节信息。这两点都影响了该模型的订正性能。因此采取以下两个措施进行改进,一是将原模型与能够学习图片全局特征的Vision Transformer有机结合起来,使其能够从全局的角度学习空间特征;二是引入UNet 3+模型中的全尺度连接操作,弥补原下采样中丢失的图像细节信息。改进之后的模型称为UNet-Former 3+,在CMIP6中月平均2 m气温的春季和冬季数据集上进行订正实验,ERA5为实验标签。模型会与分位数映射、岭回归、U-Net、CU-Net、Dense-CUnet和RA-UNet这六种订正方法进行对比。实验结果表明,此模型在两个季节的平均绝对误差都下降49%,均方根误差都下降57%,两者都低于上述六种方法。总之,UNet-Former 3+在春季和冬季的订正效果优于上述六种方法。 展开更多
关键词 短期气候预测 数据订正 Vision Transformer 全尺度连接 UNet-Former 3+
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部