期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度学习在湖南次季节气温预测业务中的应用
1
作者 黄超 李巧萍 谭楚岩 《大气科学学报》 北大核心 2025年第3期438-448,共11页
利用1981—2023年NCEP/NCAR逐日再分析资料、NOAA逐日向外长波辐射资料、湖南省97个站点逐日气温及NCEP、CMA两家次季节-季节(sub-seasonal to seasonal,S2S)预测业务模式预报产品,使用卷积神经网络(convolutional neural network,CNN)... 利用1981—2023年NCEP/NCAR逐日再分析资料、NOAA逐日向外长波辐射资料、湖南省97个站点逐日气温及NCEP、CMA两家次季节-季节(sub-seasonal to seasonal,S2S)预测业务模式预报产品,使用卷积神经网络(convolutional neural network,CNN)和迁移学习方法,建立了湖南次季节尺度气温预测模型,并与动力模式预报技巧进行对比评估。结果表明:CNN模型在不同起报时间(提前1~10 d)对月气温距平预测的空间相关系数相比两家动力模式具有显著优势,同时时间相关系数、符号一致率和均方根误差也得到一定的提高。可解释性分析显示,热带印度洋地区在深度学习模型中关注度最高,这些区域的预测因子可能是气温预测的重要可预报性来源。 展开更多
关键词 气温预测 深度学习 迁移学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部