利用双偏振雷达、地面自动站、闪电定位仪、探空等资料对江苏2012—2022年262次雷暴大风过程的环境参数和2020—2022年41个导致雷暴大风的对流风暴演变特征进行分析。结果表明:(1)雷暴大风发生在大气层结不稳定背景下,850 h Pa和500 h P...利用双偏振雷达、地面自动站、闪电定位仪、探空等资料对江苏2012—2022年262次雷暴大风过程的环境参数和2020—2022年41个导致雷暴大风的对流风暴演变特征进行分析。结果表明:(1)雷暴大风发生在大气层结不稳定背景下,850 h Pa和500 h Pa温差中位数超过25°C,对流层中层存在干层;春季动力条件较好,0~6km垂直风切变中位数达到18.4 m·s^(-1),是夏季的2倍;夏季能量条件较好,CAPE平均值可达2 491.0 J·kg^(-1),而春季仅为977.5 J·kg^(-1)。(2)凝练和定量验证了基于双偏振特征量的雷暴大风风暴演变的概念模型:对流风暴的生命史分为3个阶段,初生阶段存在较强的Z_(DR)柱,Z和K_(DP)较弱且未及地;发展阶段K_(DP)柱显著增强,Z_(DR)柱稍有减弱;雷暴大风发生阶段Z、Z_(DR)和K_(DP)核心高度均明显降低。因此,较强的Z_(DR)柱,并伴随显著增强的K_(DP)柱是雷暴大风发生的前兆信号。(3)统计获得双偏振特征量预警指标:初生阶段和发展阶段多数分别发生在雷暴大风发生前60 min和前20 min;在0~2 km的高度上,3~4 d B的Z_(DR)大值区提前10~15 min到达雷暴大风站点。展开更多
利用2011-2015年6-8月TIGGE(THORPEX Interactive Grand Global Ensemble)数据集中欧洲中期天气预报中心(ECMWF,以下简称EC)的集合降水预报数据和江苏省70个基本站逐日24 h(20时至次日20时)降水数据,通过大量暴雨样本系统检验和评估了E...利用2011-2015年6-8月TIGGE(THORPEX Interactive Grand Global Ensemble)数据集中欧洲中期天气预报中心(ECMWF,以下简称EC)的集合降水预报数据和江苏省70个基本站逐日24 h(20时至次日20时)降水数据,通过大量暴雨样本系统检验和评估了EC集合预报及多种后处理释用产品对江苏暴雨的预报能力。结果表明:作为集合预报的初级产品,集合平均对暴雨的预报存在明显的漏报率,TS预报评分尚不及EC确定性预报;集合预报不同成员间对暴雨的预报技巧差异大,其最优成员组合的预报能力显著优于EC确定性预报,表明集合预报具有较大的应用潜力;在多种集合预报后处理释用技术中,最大值、最优百分位、降水偏差订正频率匹配法、概率预报、集合异常预报法和杜-周排序法(最大值法)的平均TS评分均较高,超过10%,其次90%分位数、融合、融合-概率匹配和杜-周排序法(集合平均或中位值法)的预报效果也均优于EC确定性预报。集合中位值、概率匹配方法对江苏暴雨的预报评分低于集合平均预报,在暴雨预报上的参考价值相对较低。该评估结果进一步加深了对各集合预报产品区域暴雨预报能力的认识,为预报员更直接快速地选取有效的集合预报产品提供参考。展开更多
文摘利用中国地区AERONET(AErosol RObotic NETwork)地基观测资料对Terra/Aqua MODIS(Moderate Resolution Imaging Spectroradiometer)气溶胶产品精度进行验证,提供资料可靠性分析,并分析了各地区MODIS反演气溶胶光学厚度(Aerosol Optical Depth,AOD)的误差来源,为进一步改进算法提供依据。结果表明:(1)香河、兴隆、榆林、寿县、合肥、香港和台湾等站点MODIS AOD的质量较好。对大多数站点,Terra和Aqua MODIS AOD质量差别不大,除个别站点Terra略优于Aqua。(2)选取香河、太湖、SACOL、北京、兴隆和台湾成功大学站进行详细分析。香河站Terra和Aqua MODIS AOD质量均较好,相关系数分别为0.96和0.97,且落在期望误差内的百分数分别为72%和65%。太湖和北京站MODIS AOD存在统一高估现象,可以通过拟合直线的截距对其进行汀正,得到较接近真实值的AOD。SACOL,Terra和AquaMODISAOD与AERONETAOD的相关系数分别为0.66和0 77,且存在一定的高估。同时验证SACOL MODIS Deep Blue AOD,总体上其精度低于MODIS C005 AOD。兴隆和成功大学站反演误差均小于期望误差,数据质量较好。(3)误差分析表明香河和SACOL站的MODIS反演误差主要来自地表反射率关系的不合适;太湖和北京站的反演误差可能是由于地表和气溶胶模型两方面的共同作用导致的。个别站点随着云量增大,MODIS反演结果对AOD的高估也越大。
文摘利用双偏振雷达、地面自动站、闪电定位仪、探空等资料对江苏2012—2022年262次雷暴大风过程的环境参数和2020—2022年41个导致雷暴大风的对流风暴演变特征进行分析。结果表明:(1)雷暴大风发生在大气层结不稳定背景下,850 h Pa和500 h Pa温差中位数超过25°C,对流层中层存在干层;春季动力条件较好,0~6km垂直风切变中位数达到18.4 m·s^(-1),是夏季的2倍;夏季能量条件较好,CAPE平均值可达2 491.0 J·kg^(-1),而春季仅为977.5 J·kg^(-1)。(2)凝练和定量验证了基于双偏振特征量的雷暴大风风暴演变的概念模型:对流风暴的生命史分为3个阶段,初生阶段存在较强的Z_(DR)柱,Z和K_(DP)较弱且未及地;发展阶段K_(DP)柱显著增强,Z_(DR)柱稍有减弱;雷暴大风发生阶段Z、Z_(DR)和K_(DP)核心高度均明显降低。因此,较强的Z_(DR)柱,并伴随显著增强的K_(DP)柱是雷暴大风发生的前兆信号。(3)统计获得双偏振特征量预警指标:初生阶段和发展阶段多数分别发生在雷暴大风发生前60 min和前20 min;在0~2 km的高度上,3~4 d B的Z_(DR)大值区提前10~15 min到达雷暴大风站点。
文摘利用2011-2015年6-8月TIGGE(THORPEX Interactive Grand Global Ensemble)数据集中欧洲中期天气预报中心(ECMWF,以下简称EC)的集合降水预报数据和江苏省70个基本站逐日24 h(20时至次日20时)降水数据,通过大量暴雨样本系统检验和评估了EC集合预报及多种后处理释用产品对江苏暴雨的预报能力。结果表明:作为集合预报的初级产品,集合平均对暴雨的预报存在明显的漏报率,TS预报评分尚不及EC确定性预报;集合预报不同成员间对暴雨的预报技巧差异大,其最优成员组合的预报能力显著优于EC确定性预报,表明集合预报具有较大的应用潜力;在多种集合预报后处理释用技术中,最大值、最优百分位、降水偏差订正频率匹配法、概率预报、集合异常预报法和杜-周排序法(最大值法)的平均TS评分均较高,超过10%,其次90%分位数、融合、融合-概率匹配和杜-周排序法(集合平均或中位值法)的预报效果也均优于EC确定性预报。集合中位值、概率匹配方法对江苏暴雨的预报评分低于集合平均预报,在暴雨预报上的参考价值相对较低。该评估结果进一步加深了对各集合预报产品区域暴雨预报能力的认识,为预报员更直接快速地选取有效的集合预报产品提供参考。