在空中交通愈加拥挤的背景下,航空器的异常飞行行为的有效挖掘可以辅助管制员进行调配决策。现有方法只能辨识飞机空间位置特征异常,存在水平可扩展性的局限。本文考虑位置、速度、高度和航向4个异常特征,采用高度层划分策略、局部异常...在空中交通愈加拥挤的背景下,航空器的异常飞行行为的有效挖掘可以辅助管制员进行调配决策。现有方法只能辨识飞机空间位置特征异常,存在水平可扩展性的局限。本文考虑位置、速度、高度和航向4个异常特征,采用高度层划分策略、局部异常因子和快速覆盖树对基于密度的有噪声应用中的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)方法进行改进,提出局部异常因子改进的考虑速度、方向及高度的基于密度聚类方法(Density-based spatial clustering considering speed,direction and high level improved by local outlier factor,LOFDBSC-SDH)密度聚类算法对正常航迹模式进行快速准确提取。然后,基于正常航迹模式设计考虑过点时间和上述异常特征的航迹匹配算法,挖掘异常飞行行为。最后,通过实验仿真验证了本文方法的有效性和应用价值。展开更多
As a prospective component of the future air transportation system,unmanned aerial vehicles(UAVs)have attracted enormous interest in both academia and industry.However,small UAVs are barely supervised in the current s...As a prospective component of the future air transportation system,unmanned aerial vehicles(UAVs)have attracted enormous interest in both academia and industry.However,small UAVs are barely supervised in the current situation.Crash accidents or illegal airspace invading caused by these small drones affect public security negatively.To solve this security problem,we use the back-propagation neural network(BPNN),the support-vector machine(SVM),and the k-nearest neighbors(KNN)method to detect and classify the non-cooperative drones at the edge of the flight restriction zone based on the cepstrum of the radio frequency(RF)signal of the drone’s downlink.The signal from five various amateur drones and ambient wireless devices are sampled in an electromagnetic clean environment.The detection and classification algorithm based on the cepstrum properties is conducted.Results of the outdoor experiments suggest the proposed workflow and methods are sufficient to detect non-cooperative drones with an average accuracy of around 90%.The mainstream downlink protocols of amateur drones can be classified effectively as well.展开更多
文摘在空中交通愈加拥挤的背景下,航空器的异常飞行行为的有效挖掘可以辅助管制员进行调配决策。现有方法只能辨识飞机空间位置特征异常,存在水平可扩展性的局限。本文考虑位置、速度、高度和航向4个异常特征,采用高度层划分策略、局部异常因子和快速覆盖树对基于密度的有噪声应用中的空间聚类(Density-based spatial clustering of applications with noise,DBSCAN)方法进行改进,提出局部异常因子改进的考虑速度、方向及高度的基于密度聚类方法(Density-based spatial clustering considering speed,direction and high level improved by local outlier factor,LOFDBSC-SDH)密度聚类算法对正常航迹模式进行快速准确提取。然后,基于正常航迹模式设计考虑过点时间和上述异常特征的航迹匹配算法,挖掘异常飞行行为。最后,通过实验仿真验证了本文方法的有效性和应用价值。
基金co-supported by the National Natural Science Foundation of China (Nos. U1933130,71731001,1433203,U1533119)the Research Project of Chinese Academy of Sciences (No. ZDRW-KT-2020-21-2)。
文摘As a prospective component of the future air transportation system,unmanned aerial vehicles(UAVs)have attracted enormous interest in both academia and industry.However,small UAVs are barely supervised in the current situation.Crash accidents or illegal airspace invading caused by these small drones affect public security negatively.To solve this security problem,we use the back-propagation neural network(BPNN),the support-vector machine(SVM),and the k-nearest neighbors(KNN)method to detect and classify the non-cooperative drones at the edge of the flight restriction zone based on the cepstrum of the radio frequency(RF)signal of the drone’s downlink.The signal from five various amateur drones and ambient wireless devices are sampled in an electromagnetic clean environment.The detection and classification algorithm based on the cepstrum properties is conducted.Results of the outdoor experiments suggest the proposed workflow and methods are sufficient to detect non-cooperative drones with an average accuracy of around 90%.The mainstream downlink protocols of amateur drones can be classified effectively as well.