车载动力电池的荷电状态(state of charge,SOC)不仅影响电池的循环寿命,而且影响整车的安全性。快速而准确的荷电状态估算是电源管理系统的重要组成部分。通过对实验数据进行曲线拟合,分析了荷电状态的影响因素。将扩展卡尔曼滤波算法(e...车载动力电池的荷电状态(state of charge,SOC)不仅影响电池的循环寿命,而且影响整车的安全性。快速而准确的荷电状态估算是电源管理系统的重要组成部分。通过对实验数据进行曲线拟合,分析了荷电状态的影响因素。将扩展卡尔曼滤波算法(extended kalman filter,EKF)和无迹卡尔曼滤波算法((unscented kalman filter,UKF)应用到动力电池SOC估算中,针对机场电动摆渡车特殊的运行特点,设计合理的SOC估算算法,用MATLAB进行仿真并分析算法的快速性和准确性。展开更多
引入SIR粒子滤波算法用于估算电动汽车电池的荷电状态(State of charge,SOC),利用系统状态连续近似分布进行采样的正则化滤波算法解决了SIR粒子滤波算法多样性匮乏问题。结合安时法构建电动汽车电池的状态空间模型,进而对电池模型进行...引入SIR粒子滤波算法用于估算电动汽车电池的荷电状态(State of charge,SOC),利用系统状态连续近似分布进行采样的正则化滤波算法解决了SIR粒子滤波算法多样性匮乏问题。结合安时法构建电动汽车电池的状态空间模型,进而对电池模型进行参数辨别,结合SIR粒子滤波算法和改进后的粒子滤波算法在MATLAB中进行实验仿真。仿真结果显示,随着时间的增加,SIR粒子滤波算法估算电池SOC误差会变大,改进后的粒子滤波算法估算电池SOC一直逼近真实值,比SIR粒子滤波算法精度高、适应性更好,为电动汽车电池SOC的估算提供了新思路。展开更多
文摘引入SIR粒子滤波算法用于估算电动汽车电池的荷电状态(State of charge,SOC),利用系统状态连续近似分布进行采样的正则化滤波算法解决了SIR粒子滤波算法多样性匮乏问题。结合安时法构建电动汽车电池的状态空间模型,进而对电池模型进行参数辨别,结合SIR粒子滤波算法和改进后的粒子滤波算法在MATLAB中进行实验仿真。仿真结果显示,随着时间的增加,SIR粒子滤波算法估算电池SOC误差会变大,改进后的粒子滤波算法估算电池SOC一直逼近真实值,比SIR粒子滤波算法精度高、适应性更好,为电动汽车电池SOC的估算提供了新思路。