期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于红外图像的ISSA-BP神经网络机载电路板芯片故障诊断 被引量:4
1
作者 王力 谢晓怀 张亦弛 《红外技术》 CSCD 北大核心 2023年第3期241-248,共8页
针对传统红外图像的机载电路板芯片故障诊断法诊断率低且无法诊断动态故障的问题,本文提出了一种基于红外温度数据的改进麻雀搜索算法优化BP神经网络(Improved sparrow search algorithm-Back propagation neural networks,ISSA-BPNN)... 针对传统红外图像的机载电路板芯片故障诊断法诊断率低且无法诊断动态故障的问题,本文提出了一种基于红外温度数据的改进麻雀搜索算法优化BP神经网络(Improved sparrow search algorithm-Back propagation neural networks,ISSA-BPNN)机载电路板芯片故障诊断方法。首先,提取红外热像仪采集的电路板芯片温度数据,建立电路板芯片升温过程中静态、动态、统计特征的特征模型;然后,利用Sine混沌映射初始化麻雀种群分布,利用Levy飞行策略改进发现者种群位置更新公式,将改进后的麻雀搜索算法优化BP神经网络的权值参数;最后,将温度特征模型输入到ISSA-BP神经网络进行训练和测试,从而完成电路板芯片故障诊断。实验采用航电系统电源电路板进行可靠性分析,实验结果表明,该方法在电路板不同工况下综合故障诊断率达到97.84%。 展开更多
关键词 红外温度 改进麻雀搜索算法 BP神经网络 电路板芯片 故障诊断
在线阅读 下载PDF
基于红外的TPA和IAOA BiLSTM电路芯片故障诊断
2
作者 王力 朱猛 马江燕 《激光与红外》 CAS CSCD 北大核心 2024年第4期574-583,共10页
为了提高电路芯片故障诊断准确率,超参数设置的效率以及特征提取效率,提出一种基于时间模式注意力机制(TPA)的改进算数优化算法(IAOA)优化双向长短期记忆网络(BiLSTM)的电路故障诊断方法。首先,利用IAOA搜寻BiLSTM的最优超参数组合,提... 为了提高电路芯片故障诊断准确率,超参数设置的效率以及特征提取效率,提出一种基于时间模式注意力机制(TPA)的改进算数优化算法(IAOA)优化双向长短期记忆网络(BiLSTM)的电路故障诊断方法。首先,利用IAOA搜寻BiLSTM的最优超参数组合,提高模型诊断精度;然后使用TPA提取重要特征并分配权重,改善模型特征提取能力;最后,将红外摄像仪采集的红外温度数据输入到最优诊断模型中,实现电路芯片故障诊断。实验采用0~30 V可调稳压电源电路进行验证。结果表明,该模型对电路芯片故障诊断准确率高达9827,可实现对电路芯片的高准确率故障诊断。 展开更多
关键词 红外技术 芯片故障诊断 双向长短期记忆网络 算数优化算法 时间模式注意力机制
在线阅读 下载PDF
基于红外的SSA-CNN-GRU电路板芯片故障诊断 被引量:2
3
作者 王力 李志新 张亦弛 《激光与红外》 CAS CSCD 北大核心 2023年第4期556-565,共10页
针对电路板温度数据诊断率不佳的问题,本文提出了基于红外的SSA-CNN-GRU电路板芯片故障诊断模型。首先,根据红外热像仪采集芯片温度数据,建立多维特征模型;然后,在故障诊断模型输入端和CNN-GRU通道分别添加注意力机制,构建双注意力结构... 针对电路板温度数据诊断率不佳的问题,本文提出了基于红外的SSA-CNN-GRU电路板芯片故障诊断模型。首先,根据红外热像仪采集芯片温度数据,建立多维特征模型;然后,在故障诊断模型输入端和CNN-GRU通道分别添加注意力机制,构建双注意力结构,自适应识别有效数据段和提取红外图像有效特征;接着,利用麻雀搜索算法优化注意力机制权值分配,获取全局最优超参数;最后搭建SSA-CNN-GRU故障诊断模型,实现芯片故障模式的高精度诊断。实验采用电源电路板进行可靠性分析,实验结果表明,本文算法在诊断精度可达98.73%,且稳定性、可靠性方面均优于对比算法。 展开更多
关键词 红外技术 注意力机制 麻雀搜索算法 门控循环单元 故障诊断
在线阅读 下载PDF
基于卷积融合字典的电路板红外图像去噪研究 被引量:1
4
作者 王力 张亦弛 郝建新 《激光与红外》 CAS CSCD 北大核心 2022年第12期1867-1875,共9页
由于红外图像存在噪声,电路板芯片定位困难,因此基于红外图像的机载电路板故障诊断方法在实际应用中诊断效果并不理想。针对此问题,本文在卷积稀疏编码和字典学习的基础上,提出了一种基于卷积融合字典学习的航电系统电路板红外图像去噪... 由于红外图像存在噪声,电路板芯片定位困难,因此基于红外图像的机载电路板故障诊断方法在实际应用中诊断效果并不理想。针对此问题,本文在卷积稀疏编码和字典学习的基础上,提出了一种基于卷积融合字典学习的航电系统电路板红外图像去噪算法。首先,并行融合改进卷积稀疏编码结构和离散余弦变换字典形成复合初始化字典,以有效提取电路板红外图像特征;接着,建立稀疏特征矩阵,更新红外图像特征原子;最后,将稀疏特征系数带入算法对模型进行训练和测试,完成电路板红外图像的去噪重构。实验采用航电系统电源电路板进行可靠性分析,实验结果表明,与K-SVD和卷积网络去噪方法相比,本文算法在图像视觉效果,输出PSNR和SSIM方面更具优势,具有更好的去噪效果。 展开更多
关键词 图像去噪 红外图像 航电系统 稀疏编码 卷积网络
在线阅读 下载PDF
基于GAN-SUNet网络的电路板红外图像分割方法
5
作者 王力 夏璇 《红外技术》 2025年第4期493-500,共8页
红外图像可以直观反映电路板温度及其变化情况。为了解决电路板红外图像上芯片定位困难的问题,本文提出了一种基于GAN-SUNet网络的电路板红外图像分割方法。SUNet网络是在UNet网络的基础上进行改进,通过引入空间金字塔池化模块(SPP)并... 红外图像可以直观反映电路板温度及其变化情况。为了解决电路板红外图像上芯片定位困难的问题,本文提出了一种基于GAN-SUNet网络的电路板红外图像分割方法。SUNet网络是在UNet网络的基础上进行改进,通过引入空间金字塔池化模块(SPP)并修改网络损失函数,减少卷积核数量的方法提高网络检测精度和运行速度。首先,使用生成对抗网络(GAN)对采集到的电路板红外数据进行学习训练并生成仿真红外图像,扩充数据集;然后,使用生成的数据集对SUNet网络进行训练并通过调整模型参数提升其验证精度;最后,使用训练完毕的模型对电路板上的芯片进行识别检测与图像分割实现电路板红外图像芯片定位。实验结果表明:对于电路板红外图像分割,GAN-SUNet网络平均交并比达到93.77%,可以有效减轻人工定位芯片提取数据的压力,为之后芯片温度数据处理提供有力保障。 展开更多
关键词 电路板图像分割 深度学习 红外图像 UNet 生成对抗网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部