当前锂离子电池热失控传播特性研究主要聚焦于电池形态和触发方式,本研究采用自行研制的锂电池阵列级联热失控实验平台,对不同荷电状态(state of charge,SOC)及不同排列间隔的锂离子电池热失控传播特性开展研究。结果表明:热失控传播速...当前锂离子电池热失控传播特性研究主要聚焦于电池形态和触发方式,本研究采用自行研制的锂电池阵列级联热失控实验平台,对不同荷电状态(state of charge,SOC)及不同排列间隔的锂离子电池热失控传播特性开展研究。结果表明:热失控传播速度随着SOC的增加而加快,100%SOC电池组中热失控传播结束时间比70%SOC电池组热失控传播结束时间少70 s,100%SOC电池组热失控最高温度可达621.81℃,50%SOC的电池不会出现热失控传播现象;对于100%SOC的电池,电池间横向间距越大,热失控越难在电池组之间传播,当电池间横向间距为3 mm时,热失控不会在电池组中传播。电池间的热失控主要以层传层的形式传播。本研究对优化电池布置、防止和控制电池热失控传播具有较高的应用价值。展开更多
为研究航空变压环境下锂离子电池热失控所释放气体种类及其安全性,采用自主搭建密闭式变压实验舱开展相关实验,在不同压力环境下(101 k Pa、70 k Pa、30 k Pa)对100%荷电状态(SOC)三元锂离子电池热失控特性进行研究,记录锂电池在热失控...为研究航空变压环境下锂离子电池热失控所释放气体种类及其安全性,采用自主搭建密闭式变压实验舱开展相关实验,在不同压力环境下(101 k Pa、70 k Pa、30 k Pa)对100%荷电状态(SOC)三元锂离子电池热失控特性进行研究,记录锂电池在热失控过程中的温度及密闭实验舱的压力变化,比较不同压力环境下的热失控特征。把得到的热失控原位气体分别通入气相色谱-质谱联用仪和自主搭建的锂电池爆炸极限测试平台,对锂电池热失控产气分别进行成分分析及爆炸风险分析。研究结果表明:随着环境压力的降低,电池越早触发热失控,其产生高温和气体冲击的危险性也随之降低。不同压力环境下产生的气体成分及含量也有所不同,随着环境压力的降低,CO_(2)含量减少,而不饱和烃C_(4)H_(8)、C_(4)H_(6)、C_(5)H_(10)等气体含量增加,而这也正是低压环境下爆炸风险更大的原因。锂离子电池热失控气体爆炸上下限范围随压力降低而增大,从而造成更大的风险。研究结果可为锂离子电池在航空领域安全性研究提供理论依据,为电池的安全防控提供数据参考。展开更多
文摘当前锂离子电池热失控传播特性研究主要聚焦于电池形态和触发方式,本研究采用自行研制的锂电池阵列级联热失控实验平台,对不同荷电状态(state of charge,SOC)及不同排列间隔的锂离子电池热失控传播特性开展研究。结果表明:热失控传播速度随着SOC的增加而加快,100%SOC电池组中热失控传播结束时间比70%SOC电池组热失控传播结束时间少70 s,100%SOC电池组热失控最高温度可达621.81℃,50%SOC的电池不会出现热失控传播现象;对于100%SOC的电池,电池间横向间距越大,热失控越难在电池组之间传播,当电池间横向间距为3 mm时,热失控不会在电池组中传播。电池间的热失控主要以层传层的形式传播。本研究对优化电池布置、防止和控制电池热失控传播具有较高的应用价值。
文摘为研究航空变压环境下锂离子电池热失控所释放气体种类及其安全性,采用自主搭建密闭式变压实验舱开展相关实验,在不同压力环境下(101 k Pa、70 k Pa、30 k Pa)对100%荷电状态(SOC)三元锂离子电池热失控特性进行研究,记录锂电池在热失控过程中的温度及密闭实验舱的压力变化,比较不同压力环境下的热失控特征。把得到的热失控原位气体分别通入气相色谱-质谱联用仪和自主搭建的锂电池爆炸极限测试平台,对锂电池热失控产气分别进行成分分析及爆炸风险分析。研究结果表明:随着环境压力的降低,电池越早触发热失控,其产生高温和气体冲击的危险性也随之降低。不同压力环境下产生的气体成分及含量也有所不同,随着环境压力的降低,CO_(2)含量减少,而不饱和烃C_(4)H_(8)、C_(4)H_(6)、C_(5)H_(10)等气体含量增加,而这也正是低压环境下爆炸风险更大的原因。锂离子电池热失控气体爆炸上下限范围随压力降低而增大,从而造成更大的风险。研究结果可为锂离子电池在航空领域安全性研究提供理论依据,为电池的安全防控提供数据参考。