北极气候研究多学科漂流观测计划(Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC)于2019年10月至2020年9月开展,期间获得了变量完整的大气、海洋、海冰厚度及积雪厚度观测,为海冰模式的发展提供了...北极气候研究多学科漂流观测计划(Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC)于2019年10月至2020年9月开展,期间获得了变量完整的大气、海洋、海冰厚度及积雪厚度观测,为海冰模式的发展提供了新的契机。本研究利用两个完整观测时段(2019年11月1日至2020年5月7日、2020年6月26日至7月27日)的大气和海洋强迫场,驱动一维海冰柱模式ICEPACK,模拟了MOSAiC期间海冰厚度的季节演变,同海冰厚度观测进行了对比,并诊断分析了海冰厚度模拟误差的原因。结果表明,在冬春季节,模式可以再现海冰厚度增长过程,但由于模式在春季高估了积雪向海冰的转化及对海冰物质平衡的贡献,模拟的春季海冰厚度偏厚。在夏季期间,2种热力学方案及3种融池方案的组合都表明模式高估了海冰表层的消融过程,导致模拟结束阶段的海冰厚度偏薄。我们的研究表明,使用变量完整的MOSAiC大气和海洋强迫场可以诊断目前海冰模式中的问题,为海冰模式的改进奠定基础。展开更多
极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫...极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫星的紫外极光成像仪(Ultraviolet Imager,UVI)数据,采用两种不同的极光强度表征方法,即曲线拟合方法(从UVI图像数据中提取极光强度沿磁余纬方向上的曲线特征,Curve Feature along the Magnetic Co-latitude Direction of the Auroral Intensity,CFMCD_AI)和网格化方法(从UVI图像数据中提取极光强度的网格化特征,Gridding Feature of the Auroral Intensity,GF_AI),来构造极区极光强度特征数据库.然后,利用该数据库,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)构建了以行星际/太阳风参数(行星际磁场三分量、太阳风速度和密度)和地磁指数(AE指数)为输入参数的两种极光强度预测模型(GRNN_CFMCD_AI模型和GRNN_GF_AI模型).利用图像质量评价指数结构相似度(structure similarity,SSIM)作为极光强度模型预测结果和对应的UVI图像的相似性评价标准(完全相似为1,不相似为0,一般认为SSIM大于0.5是具有较好的相似性),对两种极光强度模型进行了性能评价.结果显示,GRNN_GF_AI模型预测结果对应的SSIM值范围为0.36~0.77,均值为0.54,性能优于GRNN_CFMCD_AI模型的.展开更多
文摘北极气候研究多学科漂流观测计划(Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC)于2019年10月至2020年9月开展,期间获得了变量完整的大气、海洋、海冰厚度及积雪厚度观测,为海冰模式的发展提供了新的契机。本研究利用两个完整观测时段(2019年11月1日至2020年5月7日、2020年6月26日至7月27日)的大气和海洋强迫场,驱动一维海冰柱模式ICEPACK,模拟了MOSAiC期间海冰厚度的季节演变,同海冰厚度观测进行了对比,并诊断分析了海冰厚度模拟误差的原因。结果表明,在冬春季节,模式可以再现海冰厚度增长过程,但由于模式在春季高估了积雪向海冰的转化及对海冰物质平衡的贡献,模拟的春季海冰厚度偏厚。在夏季期间,2种热力学方案及3种融池方案的组合都表明模式高估了海冰表层的消融过程,导致模拟结束阶段的海冰厚度偏薄。我们的研究表明,使用变量完整的MOSAiC大气和海洋强迫场可以诊断目前海冰模式中的问题,为海冰模式的改进奠定基础。
文摘极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫星的紫外极光成像仪(Ultraviolet Imager,UVI)数据,采用两种不同的极光强度表征方法,即曲线拟合方法(从UVI图像数据中提取极光强度沿磁余纬方向上的曲线特征,Curve Feature along the Magnetic Co-latitude Direction of the Auroral Intensity,CFMCD_AI)和网格化方法(从UVI图像数据中提取极光强度的网格化特征,Gridding Feature of the Auroral Intensity,GF_AI),来构造极区极光强度特征数据库.然后,利用该数据库,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)构建了以行星际/太阳风参数(行星际磁场三分量、太阳风速度和密度)和地磁指数(AE指数)为输入参数的两种极光强度预测模型(GRNN_CFMCD_AI模型和GRNN_GF_AI模型).利用图像质量评价指数结构相似度(structure similarity,SSIM)作为极光强度模型预测结果和对应的UVI图像的相似性评价标准(完全相似为1,不相似为0,一般认为SSIM大于0.5是具有较好的相似性),对两种极光强度模型进行了性能评价.结果显示,GRNN_GF_AI模型预测结果对应的SSIM值范围为0.36~0.77,均值为0.54,性能优于GRNN_CFMCD_AI模型的.