期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于密度峰值的混合型数据聚类算法设计 被引量:6
1
作者 李晔 陈奕延 张淑芬 《计算机应用》 CSCD 北大核心 2018年第2期483-490,496,共9页
针对k-prototypes算法无法自动识别簇数以及无法发现任意形状的簇的问题,提出一种针对混合型数据的新方法:寻找密度峰值的聚类算法。首先,把CFSFDP(Clustering by Fast Search and Find of Density Peaks)聚类算法扩展到混合型数据集,... 针对k-prototypes算法无法自动识别簇数以及无法发现任意形状的簇的问题,提出一种针对混合型数据的新方法:寻找密度峰值的聚类算法。首先,把CFSFDP(Clustering by Fast Search and Find of Density Peaks)聚类算法扩展到混合型数据集,定义混合型数据对象之间的距离后利用CFSFDP算法确定出簇中心,这样也就自动确定了簇的个数,然后其余的点按照密度从大到小的顺序进行分配。其次,研究了该算法中阈值(截断距离)及权值的选取问题:对于密度公式中的阈值,通过计算数据场中的势熵来自动提取;对于距离公式中的权值,利用度量数值型数据集和分类型数据集聚类趋势的统计量来定义。最后通过在三个实际混合型数据集上的测试发现:与传统k-prototypes算法相比,寻找密度峰值的聚类算法能有效提高聚类的精度。 展开更多
关键词 聚类分析 混合型数据 数据场 聚类趋势 密度峰值
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部