期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
大语言模型及其在矿物问答系统中的应用
1
作者 季晓慧 刘成健 +4 位作者 杨眉 何明跃 张招崇 曾姗 王玉柱 《矿物岩石地球化学通报》 北大核心 2025年第3期453-461,I0002,共10页
大语言模型(LLMs,Large Language Models)具有极强的自然语言理解和复杂问题求解能力,本文基于大语言模型构建了矿物问答系统,以高效地获取矿物知识。该系统首先从互联网资源获取矿物数据,清洗后将矿物数据结构化为矿物文档和问答对;将... 大语言模型(LLMs,Large Language Models)具有极强的自然语言理解和复杂问题求解能力,本文基于大语言模型构建了矿物问答系统,以高效地获取矿物知识。该系统首先从互联网资源获取矿物数据,清洗后将矿物数据结构化为矿物文档和问答对;将矿物文档经过格式转换和建立索引后转化为矿物知识库,用于检索增强大语言模型生成,问答对用于微调大语言模型。使用矿物知识库检索增强大语言模型生成时,采用先召回再精排的两级检索模式,以获得更好的大语言模型生成结果。矿物大语言模型微调采用了主流的低秩适配(Low-Rank Adaption,LoRA)方法,以较少的训练参数获得了与全参微调性能相当的效果,节省了计算资源。实验结果表明,基于检索增强生成的大语言模型的矿物问答系统能以较高的准确率快捷地获取矿物知识。 展开更多
关键词 大语言模型 矿物 检索增强生成 低秩适配 问答系统
在线阅读 下载PDF
基于知识图谱多跳推理的中文矿物知识问答方法与系统 被引量:6
2
作者 季晓慧 董雨航 +3 位作者 杨中基 杨眉 何明跃 王玉柱 《地学前缘》 EI CAS CSCD 北大核心 2024年第4期37-46,共10页
已有相关矿物数据库用于存储和查询相关矿物知识,常用的搜索引擎也可以对矿物知识进行查询,但无法回答用自然语言进行提问的矿物问题,查询返回的答案需要进一步筛选。亦有基于知识图谱进行矿物知识问答的相关研究,但只能回答涉及知识图... 已有相关矿物数据库用于存储和查询相关矿物知识,常用的搜索引擎也可以对矿物知识进行查询,但无法回答用自然语言进行提问的矿物问题,查询返回的答案需要进一步筛选。亦有基于知识图谱进行矿物知识问答的相关研究,但只能回答涉及知识图谱中一个三元组的简单问题,无法回答涉及多个三元组的多跳复杂问题。为此,本文提出基于知识图谱多跳推理的矿物复杂知识问答方法,采用ComplEx模型将矿物实体、关系和问句表示为复数向量,以更好地获取相互之间的语义及推理关系。输入矿物问句后,通过Bert-LSTM-CRF获取其中心词,采用基于编辑距离及分词的方法获得中心词的候选实体集合,然后采用全连接网络确定最相关的实体作为推理起点,与矿物问句拼接后通过全连接网络获得当前跳的最相关关系。根据当前跳的起始实体及最相关关系,在矿物知识图谱中获得另一实体作为下一跳的推理起点,并将下一跳的问句更新为原问句,与当前跳最相关关系拼接,以将当前跳的推理信息带入到下一跳推理中,直到获得的最相关推理关系为预定义的结束标识符,推理结束,返回最后一跳的实体为答案,并给出推理路径。采用Python语言,在Tensorflow框架下实现了本文提出的矿物复杂知识问答并与相关模型进行对比,证明了本文方法的有效性。采用前后端分离架构,使用RESTful API、React、Ajax、echarts和Flask等框架和技术,开发了基于知识图谱多跳推理的矿物复杂知识问答系统,为矿物知识获取及相关地质研究提供了平台和工具。 展开更多
关键词 矿物 问答系统 知识图谱 多跳推理
在线阅读 下载PDF
基于数据增强和集成学习的矿物图像识别 被引量:7
3
作者 王琳 季晓慧 +4 位作者 杨眉 何明跃 张招崇 曾姗 王玉柱 《地学前缘》 EI CAS CSCD 北大核心 2024年第4期87-94,共8页
矿物识别是地质学研究的一个重要部分,对于资源勘探、岩石分类和地质环境监测都有着重要的意义。然而,传统方法通常依赖人的经验进行主观判断,并且效率低下。近年来,已有许多研究将深度学习的图像分类技术应用于矿物识别,以客观快速地... 矿物识别是地质学研究的一个重要部分,对于资源勘探、岩石分类和地质环境监测都有着重要的意义。然而,传统方法通常依赖人的经验进行主观判断,并且效率低下。近年来,已有许多研究将深度学习的图像分类技术应用于矿物识别,以客观快速地识别矿物,这些研究都取得了一定的成果,但可识别矿物种类有限且精度需要进一步提升。为此本文首先解决了矿物数据集图像数据样本分布不平衡问题,对数据集中矿物图像较少的11个矿物类别采用DCGAN生成矿物图像进行数据增强,对比选择效果更好的方案对数据集进行扩充。其次,为了得到更可靠、精确度更高的识别模型,将ImageNet上表现较好的ResNet、RegNet、EfficientNet和Vision Transformer模型迁移到本文使用的矿物数据集上。针对训练好的基模型排列组合得到11个子模型,分别使用平均软投票法和加权软投票法两种方法进行集成,得到22个集成模型并对其训练得到识别结果,对比22个集成模型的结果选择出精度最高的集成模型。实验结果表明:使用DCGAN进行数据增强,在不同的模型上平均提升了3.12%的准确率,充分证明了DCGAN数据增强的有效性;在所有集成模型中,使用加权软投票法的模型表现较好,其中精度最高的是利用4个基分类模型进行加权软投票得到的集成模型,在扩充后的36种常见矿物数据集上达到了87.47%的准确率。 展开更多
关键词 矿物识别 深度卷积生成对抗网络 数据增强 集成学习
在线阅读 下载PDF
基于渐进多粒度训练深度学习的矿物图像识别 被引量:3
4
作者 万成舟 季晓慧 +4 位作者 杨眉 何明跃 张招崇 曾姗 王玉柱 《地学前缘》 EI CAS CSCD 北大核心 2024年第4期112-118,共7页
近年来,随着深度学习在地学领域中的应用,矿物图像识别变得越来越重要。虽然已经有研究将深度学习应用于矿物图像识别,并取得了一定的成果,但在大规模矿物数据集上的识别准确率仍然有待进一步提高。不同矿物之间可能存在细微的形态、纹... 近年来,随着深度学习在地学领域中的应用,矿物图像识别变得越来越重要。虽然已经有研究将深度学习应用于矿物图像识别,并取得了一定的成果,但在大规模矿物数据集上的识别准确率仍然有待进一步提高。不同矿物之间可能存在细微的形态、纹理和颜色差异,符合细粒度识别算法特征,但以往的研究中很少有人采用细粒度方法进行矿物识别。所以本文提出了一种基于Next-ViT模型的细粒度矿物识别方法,通过引入渐进式多粒度训练拼图技术,实现对矿物图像的精确分类。首先采用Next-ViT模型作为特征提取器,该模型结合了Transformer结构和卷积神经网络的优势,能够提取到丰富的图像特征;接下来利用随机拼图生成器创建不同粒度级别的矿物拼图,这些拼图包含从细节到整体的多种信息。训练过程中采用渐进式多粒度训练策略,在训练的早期阶段,模型主要关注细粒度的特征,通过学习拼图中的细节信息来区分不同的矿物,随着训练的深入,模型逐渐将注意力转移到更大粒度级别的特征上,学习更加抽象和全局的信息。通过这种方式,模型能够充分利用不同粒度级别的信息,提高矿物识别的准确性。实验结果表明,该模型在常见的36种矿物数据集上取得了86.5%的准确率,有效地提高了矿物识别的准确率。这表明,细粒度识别方法对于矿物识别是有效的。 展开更多
关键词 矿物识别 深度学习 Next-ViT 细粒度识别 渐进式多粒度训练
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部