期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于改进加权LDA模型的敏感词识别模型
1
作者 曾玲 林天余 +2 位作者 何秋霞 陈莹 胡娟娟 《兵工自动化》 北大核心 2025年第6期28-32,共5页
针对目前互联网中主题识别时存在数据复杂、预测精度低的缺陷,提出一种基于改进加权潜在狄利克雷分配(latent Dirichlet allocation,LDA)模型的敏感词识别模型。建立特定领域敏感词语料库;为提高敏感信息主题的识别效率,对语料库进行粗... 针对目前互联网中主题识别时存在数据复杂、预测精度低的缺陷,提出一种基于改进加权潜在狄利克雷分配(latent Dirichlet allocation,LDA)模型的敏感词识别模型。建立特定领域敏感词语料库;为提高敏感信息主题的识别效率,对语料库进行粗粒度文本分类;通过加权模型,提高共现频率低但敏感特征明显的词的分布权重,从而可以发现更多具有低频隐式关系的词;以主流新闻网站爬取的数据为例,对所提模型进行验证。结果表明:该模型可识别和提取每个类别的文本更详细的敏感信息主题,该模型有效且准确。 展开更多
关键词 主题识别 敏感词 自然语言处理 潜在狄利克雷分配
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部