期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SMOTE辅助分区误差控制的随机森林土壤重金属含量预测模型
1
作者 陈敏 董泽馨 +3 位作者 秦莉 张晨晨 张彦儒 孙思佳 《农业资源与环境学报》 北大核心 2025年第3期580-591,共12页
土壤中重金属空间分布的准确预测是制定科学合理的土地利用规划以及构建有效风险管理措施的关键环节。本研究旨在探索一种结合合成少数类过采样技术(SMOTE)和分区误差控制混合策略的随机森林(RF)模型,利用长株潭(长沙市、株洲市和湘潭市... 土壤中重金属空间分布的准确预测是制定科学合理的土地利用规划以及构建有效风险管理措施的关键环节。本研究旨在探索一种结合合成少数类过采样技术(SMOTE)和分区误差控制混合策略的随机森林(RF)模型,利用长株潭(长沙市、株洲市和湘潭市)区域8种重金属元素(As、Cd、Cr、Cu、Hg、Ni、Pb和Zn)及29项环境辅助变量数据,开展区域土壤重金属空间预测精度比较研究。将本研究构建的模型与全区及分区随机森林建模方法进行了比较分析,同时,也与三种经典地统计学方法——普通克里金(OK)、协同克里金(CK)和反距离加权法(IDW)进行了对比。结果表明:相较于全区建模方法,本研究构建的模型在预测Cd、Cr、Hg、Ni、Pb和Zn 6种重金属含量的R^(2)值提升了15.87%~35.39%;与分区建模方法相比,所有8种重金属的预测精度也有了显著提高,R^(2)值的增幅为3.03%~66.86%。与地统计学方法比较,本模型在Cd、Cr、Hg、Pb和Zn 5种重金属预测中表现出优越性,与OK、CK和IDW法相比,R^(2)值分别提升了2.45%~13.80%、15.09%~89.95%、1.57%~102.91%。本研究探索的混合策略模型显著提高了长株潭区域土壤中8种重金属元素的预测准确度,表明SMOTE技术和分区误差控制策略的结合应用在环境科学领域内有巨大潜力。该模型不仅在预测精度上超越了传统模型和方法,还为环境监测和管理提供了一种有效的新工具。 展开更多
关键词 土壤重金属预测 随机森林 SMOTE过采样 普通克里金 协同克里金 反距离加权
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部