期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于GA-LSSVM和近红外傅里叶变换的霉变板栗识别 被引量:34
1
作者 周竹 李小昱 +3 位作者 李培武 高云 展慧 刘洁 《农业工程学报》 EI CAS CSCD 北大核心 2011年第3期331-335,共5页
为克服板栗近红外光谱变量多、共线性强等缺点,该文对标准正态变量变换预处理后的板栗近红外光谱进行傅里叶变换,并用不同方法建模,提高识别精度。采用试探法提取近红外光谱傅里叶系数,建立了基于最小二乘支持向量机分类器的霉变板栗识... 为克服板栗近红外光谱变量多、共线性强等缺点,该文对标准正态变量变换预处理后的板栗近红外光谱进行傅里叶变换,并用不同方法建模,提高识别精度。采用试探法提取近红外光谱傅里叶系数,建立了基于最小二乘支持向量机分类器的霉变板栗识别模型。当提取前35点傅里叶系数时,板栗的平均识别正确率为93.56%;构造GA-LSSVM算法,建立的霉变板栗识别模型所用傅里叶系数减少为13点,对测试集中合格板栗、表面霉变板栗和内部霉变板栗的平均识别正确率分别为95.89%、100%和98.25%,板栗的总体平均识别正确率提高到97.54%。为霉变板栗的识别提供了快速鉴别分析方法。 展开更多
关键词 遗传算法(GA) 识别 傅里叶变换 板栗 近红外光谱 最小二乘支持向量机(LSSVM)
在线阅读 下载PDF
基于近红外光谱的板栗水分检测方法 被引量:71
2
作者 刘洁 李小昱 +3 位作者 李培武 王为 周炜 张军 《农业工程学报》 EI CAS CSCD 北大核心 2010年第2期338-341,共4页
含水率是影响板栗贮藏、加工的关键指标之一,该文应用近红外光谱技术对板栗含水率进行快速无损检测。试验对240个板栗样本的带壳光谱和栗仁板栗光谱采用SPXY算法进行样本集划分,利用偏最小二乘法建立含水率定量检测模型,并对微分、多元... 含水率是影响板栗贮藏、加工的关键指标之一,该文应用近红外光谱技术对板栗含水率进行快速无损检测。试验对240个板栗样本的带壳光谱和栗仁板栗光谱采用SPXY算法进行样本集划分,利用偏最小二乘法建立含水率定量检测模型,并对微分、多元散射校正、变量标准化等多种预处理方法对建模结果的影响进行比较。结果表明:栗仁和带壳板栗的光谱经一阶微分预处理后所建模型性能最佳,其中栗仁的水分检测模型校正集和验证集的相关系数分别为0.9359和0.8473,校正均方根误差为1.44%,验证均方根误差为1.83%;带壳板栗光谱所建模型校正集和验证集的相关系数分别为0.8270和0.7655,校正均方根误差为2.27%,验证均方根误差为2.35%。受栗壳的影响,带壳板栗光谱模型对含水率的预测精度低于栗仁光谱模型的预测精度。研究表明,近红外光谱分析技术可用于板栗含水率的快速无损检测。 展开更多
关键词 近红外光谱 水分 无损检测 板栗
在线阅读 下载PDF
近红外光谱和机器视觉信息融合的土壤含水率检测 被引量:16
3
作者 肖武 李小昱 +3 位作者 李培武 冯耀泽 王为 张军 《农业工程学报》 EI CAS CSCD 北大核心 2009年第8期14-17,共4页
为了精确、快速和稳定测定土壤含水率以及扩大所建模型的适应性,该文提出了机器视觉与近红外光谱技术融合的土壤含水率分析方法。通过试验建立了湖北地区主要土壤基于近红外光谱的土壤含水率分析模型、基于土壤表层图像特征参数的含水... 为了精确、快速和稳定测定土壤含水率以及扩大所建模型的适应性,该文提出了机器视觉与近红外光谱技术融合的土壤含水率分析方法。通过试验建立了湖北地区主要土壤基于近红外光谱的土壤含水率分析模型、基于土壤表层图像特征参数的含水率分析模型和机器视觉与近红外光谱信息融合的土壤含水率分析模型。结果表明,基于近红外光谱含水率分析模型虽然具有较高的精度,但该模型预测非建模样品黄绵土误差均大于4%;以图像特征参数H,S和V所建BP人工神经网络非线性预测模型最优,模型的决定系数R2为0.9849,但当土壤水分饱和(达到20%以上)时存在分析误差;而所建立的土壤的近红外光谱与机器视觉BP神经网络信息融合模型可预测非建模样品黄绵土与水分饱和达20%以上土壤,决定系数R2可达到0.9961,融合模型分析精度均高于单独使用近红外光谱或机器视觉分析模型。 展开更多
关键词 土壤含水率 信息融合 近红外光谱 机器视觉 BP神经网络
在线阅读 下载PDF
基于近红外光谱土壤水分检测模型的适应性 被引量:26
4
作者 肖武 李小昱 +4 位作者 李培武 雷廷武 王为 刘洁 冯耀泽 《农业工程学报》 EI CAS CSCD 北大核心 2009年第3期33-36,共4页
由于土壤水分的近红外光谱定量分析模型精度依赖于样品状态,故土壤水分定量分析模型的适应性极其重要。以湖北地区的3种土壤为研究对象,利用偏最小二乘法交叉验证建立了处理后样品下的土壤水分分析模型,模型预测值与标准值的决定系数R2... 由于土壤水分的近红外光谱定量分析模型精度依赖于样品状态,故土壤水分定量分析模型的适应性极其重要。以湖北地区的3种土壤为研究对象,利用偏最小二乘法交叉验证建立了处理后样品下的土壤水分分析模型,模型预测值与标准值的决定系数R2为0.9946,交叉验证预测均方差为0.801%,模型预测决定系数R2为0.9919,预测均方差为0.912%;利用主成分分析了未处理土壤样品与处理土壤样品得分图的差异,结果表明定量分析模型对未处理样品的预测精度降低;采用斜率/截距的方法修正了12个未处理样品的模型预测值,预测平均绝对值误差从0.78%降低到0.38%,结果表明斜率/截距校正法能较好的提高近红外光谱土壤水分定量分析模型的适应性。 展开更多
关键词 近红外光谱 土壤水分 主成分析 模型适应性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部