期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于高光谱成像技术和机器学习的猕猴桃果实可溶性固形物含量预测 被引量:2
1
作者 刘子涵 李明 +4 位作者 赵峙尧 陈谦 李佳利 于家斌 钱建平 《果树学报》 CAS CSCD 北大核心 2024年第12期2606-2620,共15页
【目的】可溶性固形物含量(SSC)是评价猕猴桃果实品质的关键指标。旨在利用高光谱技术构建猕猴桃果实SSC预测方案,实现无损、准确评估果实内部品质。【方法】以米良一号猕猴桃果实为研究对象,对高光谱图像进行白板校正、感兴趣区域提取... 【目的】可溶性固形物含量(SSC)是评价猕猴桃果实品质的关键指标。旨在利用高光谱技术构建猕猴桃果实SSC预测方案,实现无损、准确评估果实内部品质。【方法】以米良一号猕猴桃果实为研究对象,对高光谱图像进行白板校正、感兴趣区域提取;采用MSC、SG平滑、SG-MSC和SG-SNV方法进行光谱数据预处理以消除噪声影响,并通过PLSR模型确定最优方法;结合CARS、SPA和RF算法分别提取与果实SSC相关的特征波段;建立PLSR、SVR、RFR、BPNN模型,比较特征波段与SSC实测值之间的耦合关系,选出最优模型,并利用PSO算法优化其预测精度,以实现果实内部品质的泛化预测。【结果】MSC方法在全波段回归中表现最佳;CARS算法有效简化模型并提取关键特征波段;SVR模型预测精度最高,经PSO优化后训练集和测试集决定系数分别为R_(c)^(2)=0.949,R_(P)^(2)=0.913;均方根误差分别为RMSEC=0.341 2,RMSEP=0.364 9。【结论】相比于单一环节的算法优化,MSC+CARS+PSO-SVR的组合模型在猕猴桃果实可溶性固形物含量预测方面表现更优,研究结果可为果品品质监测和分级分选提供技术支持。 展开更多
关键词 猕猴桃 高光谱成像技术 可溶性固形物含量 机器学习 品质预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部