期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PLSR和BPNN方法的番茄光合速率预测比较(英文) 被引量:5
1
作者 李婷 季宇寒 +2 位作者 张漫 沙莎 李民赞 《农业工程学报》 EI CAS CSCD 北大核心 2015年第S2期222-229,共8页
CO2作为温室作物光合作用的重要原料,不同环境因子交互作用的植株叶片对CO2浓度需求具有较大差异。为寻求CO2浓度合理增施量,该文基于偏最小二乘法和BP神经网络方法对不同生长阶段番茄作物进行光合速率预测,进而探讨作物生长过程中可通... CO2作为温室作物光合作用的重要原料,不同环境因子交互作用的植株叶片对CO2浓度需求具有较大差异。为寻求CO2浓度合理增施量,该文基于偏最小二乘法和BP神经网络方法对不同生长阶段番茄作物进行光合速率预测,进而探讨作物生长过程中可通用的光合速率预测方法。试验以无线传感器网络系统实时监测环境信息(CO2浓度,光照强度,空气温度及相对湿度),以LI-6400XT光合速率仪获取作物单叶净光合速率。剔除样本奇异点后,对样本值进行统一归一化。以CO2浓度、光照强度、空气温度及相对湿度为模型输入变量,以光合速率为输出量,利用偏最小二乘法和BP神经网络方法分别建立番茄幼苗期,开花期及结果期的光合速率预测模型。模型验证结果表明,偏最小二乘法在番茄各生长阶段的决定系数分别为0.74,0.88和0.85,最大相对误差为15.01%;而BP神经网络在各阶段具有较高的预测精度,其决定系数分别为0.94,0.96和0.97,最大相对误差为9.56%。因此,基于BP神经网络模型预测了特定环境下的CO2浓度饱和点,为温室CO2增施提供依据。 展开更多
关键词 温室 无线传感器网络 光合 番茄 偏最小二乘回归 BP神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部