期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
玉米作物多光谱图像精准分割与叶绿素诊断方法研究 被引量:14
1
作者 吴倩 孙红 +2 位作者 李民赞 宋媛媛 张彦娥 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第1期178-183,共6页
为了快速获取大田玉米作物长势信息,基于多光谱图像开展了大田玉米叶绿素指标的非破坏性诊断研究。应用自主开发的2-CCD多光谱图像感知系统,在田间采集玉米冠层可见光[Blue(B),Green(G),Red(R);400~700nm]和近红外(Near-infrared... 为了快速获取大田玉米作物长势信息,基于多光谱图像开展了大田玉米叶绿素指标的非破坏性诊断研究。应用自主开发的2-CCD多光谱图像感知系统,在田间采集玉米冠层可见光[Blue(B),Green(G),Red(R);400~700nm]和近红外(Near-infrared:NIR,760~1 000nm)图像,并使用SPAD同步测量样本叶绿素指标。采集后图像经自适应平滑滤波处理后,进行图像玉米植株提取。为了选择最优算法实现玉米植株与杂草、土壤背景的分割,首先比较了最大类间方差(OTSU)分割算法和局部阈值处理分割算法,选取了基于局部统计的可变阈值处理方法对玉米NIR图像进行初步分割,进而采用区域标记算法进行精细分割,分割准确率达95.59%。将分割结果应用于玉米植株可见光图像R,G,B各通道,从而实现了玉米植株多光谱图像中可见光图像的整体分割。基于分割后R,G,B和NIR四个通道的玉米冠层图像,提取了各通道图像灰度均值(ANIR,ARed,AGreen和ABlue)并计算了归一化植被指数(NDVI)、比值植被指数(RVI)和绿色归一化植被指数(NDGI)作为光谱特征参数,建立了玉米冠层叶绿素指标诊断的偏最小二乘法回归模型。结果表明,建模R^2达0.596 0,预测R^2达0.568 5,该方法通过玉米多光谱图像特征参数评估叶片叶绿素含量,可为大田玉米长势监测提供支持。 展开更多
关键词 多光谱图像 局部阈值处理 区域标记 叶绿素
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部