期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Focal Loss和时空特征提取的网络入侵检测算法研究
被引量:
1
1
作者
王震
佟志勇
杨自恒
《黑龙江大学工程学报(中英俄文)》
2024年第3期27-35,共9页
在网络入侵检测领域中,由于网络流量特征提取不充分和网络数据分布不均衡的问题,入侵检测系统的识别率受到了明显的影响。提出一种基于Focal Loss并能够从时序和空间两维度进行提取特征的网络模型。在时序方面,主要采用双向门控循环单元...
在网络入侵检测领域中,由于网络流量特征提取不充分和网络数据分布不均衡的问题,入侵检测系统的识别率受到了明显的影响。提出一种基于Focal Loss并能够从时序和空间两维度进行提取特征的网络模型。在时序方面,主要采用双向门控循环单元(BiGRU)模型进行特征的提取,随后通过Transformer-Encoder的多头注意力机制重新分配特征权重,增强了模型对关键特征的关注度。在空间特征方面,主要采用Inception模块并引入残差思想,有效的提取网络中的空间特征。将这两个维度的特征融合,并通过分类器进行分类。为了缓解模型聚焦多数类别样本的问题,整个模型使用焦点损失函数(Focal Loss)进行参数的更新。通过在CICIDS2018和UNSW_NB15两个数据集上进行大量实验,有效证明了提出的模型在准确率、精确率、召回率、F1值上均优于现有其他方法。
展开更多
关键词
入侵检测
时空特征提取
多头注意力机制
残差网络
Focal
Loss
在线阅读
下载PDF
职称材料
题名
基于Focal Loss和时空特征提取的网络入侵检测算法研究
被引量:
1
1
作者
王震
佟志勇
杨自恒
机构
黑龙江
大学电子工程学院
中国人民解放军黑龙江省军区数据信息室
出处
《黑龙江大学工程学报(中英俄文)》
2024年第3期27-35,共9页
基金
国家自然科学基金项目(61471158)
文摘
在网络入侵检测领域中,由于网络流量特征提取不充分和网络数据分布不均衡的问题,入侵检测系统的识别率受到了明显的影响。提出一种基于Focal Loss并能够从时序和空间两维度进行提取特征的网络模型。在时序方面,主要采用双向门控循环单元(BiGRU)模型进行特征的提取,随后通过Transformer-Encoder的多头注意力机制重新分配特征权重,增强了模型对关键特征的关注度。在空间特征方面,主要采用Inception模块并引入残差思想,有效的提取网络中的空间特征。将这两个维度的特征融合,并通过分类器进行分类。为了缓解模型聚焦多数类别样本的问题,整个模型使用焦点损失函数(Focal Loss)进行参数的更新。通过在CICIDS2018和UNSW_NB15两个数据集上进行大量实验,有效证明了提出的模型在准确率、精确率、召回率、F1值上均优于现有其他方法。
关键词
入侵检测
时空特征提取
多头注意力机制
残差网络
Focal
Loss
Keywords
intrusion detection
spatiotemporal feature extraction
multi-head attention mechanism
residual network
Focal Loss
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Focal Loss和时空特征提取的网络入侵检测算法研究
王震
佟志勇
杨自恒
《黑龙江大学工程学报(中英俄文)》
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部