期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于焦虑障碍患者及高危人群的脑电图研究
被引量:
1
1
作者
冯廷炜
冯博
+10 位作者
侯依琳
任垒
毋琳
李丹阳
杨伟
张鹏
王步遥
李红政
王卉
王秀超
刘旭峰
《海军军医大学学报》
CAS
CSCD
北大核心
2024年第6期740-747,共8页
目的探讨焦虑障碍患者及高危人群脑电特征,为军队征兵心理选拔及多质融合理论提供客观支持。方法招募焦虑障碍患者(焦虑障碍组,n=38)、焦虑障碍高危者(焦虑高危组,n=39)及健康人(正常组,n=38)并收集其脑电数据,使用eeglab软件对3组被试...
目的探讨焦虑障碍患者及高危人群脑电特征,为军队征兵心理选拔及多质融合理论提供客观支持。方法招募焦虑障碍患者(焦虑障碍组,n=38)、焦虑障碍高危者(焦虑高危组,n=39)及健康人(正常组,n=38)并收集其脑电数据,使用eeglab软件对3组被试的多质融合指标[功率谱密度(PSD)、时频幅值、功能连接)进行分析,考察PSD、加权相位延迟指数(wPLI)能否用作评估焦虑障碍的脑异常指标;采用Python 2.0 Scikit-Learn包的支持向量机与K近邻分类器对3组被试进行二分类。结果在δ、θ和α低频频段,3组被试PSD差异显著。PSD在δ频段组间主效应差异有统计学意义(F=97.55,P<0.001),焦虑障碍组(6.16±0.61)>焦虑高危组(5.22±0.73)>正常组(3.36±0.06);PSD在θ频段组间主效应差异有统计学意义(F=65.87,P<0.001),焦虑障碍组(2.25±0.07)>焦虑高危组(2.23±0.08)>正常组(1.34±0.39);PSD在α频段组间主效应差异有统计学意义(F=178.73,P<0.001),焦虑障碍组(2.02±0.45)>焦虑高危组(1.94±0.57)>正常组(0.98±0.02)。在β1、β2及γ高频频段,焦虑高危组前额叶(FP1、FP2)和颞叶(T3、T4)区PSD有上升波动。在β1频段焦虑障碍组与正常组的wPLI分别在TP7-FC3电极对(t=2.45,P<0.05)与T5-FC3电极对(t=-3.01,P<0.05)的差异有统计学意义。结合行为学、频域、时频和功能连接4种特征筛选指标应用于机器学习,多质融合指标较单纯行为学指标识别焦虑高危者与正常人的准确率从75.00%提高到82.61%。结论利用机器学习对脑电指标进行分类,结合多质融合理论可作为提高区分焦虑障碍人群的潜在特征,在未来征兵心理选拔与临床评估中具有前瞻性意义。
展开更多
关键词
焦虑障碍
焦虑高危
脑电图
功能连接
机器学习
在线阅读
下载PDF
职称材料
题名
基于焦虑障碍患者及高危人群的脑电图研究
被引量:
1
1
作者
冯廷炜
冯博
侯依琳
任垒
毋琳
李丹阳
杨伟
张鹏
王步遥
李红政
王卉
王秀超
刘旭峰
机构
空军军医大学军事医学
心
理学系
新疆师范大学教育科学学院
西京学院
心
理咨询中
心
北京中医药大学东方学院
心
理咨询中
心
中国人民解放军联勤保障部队第九二三医院精神心理科
出处
《海军军医大学学报》
CAS
CSCD
北大核心
2024年第6期740-747,共8页
基金
军队后勤重大项目(AKJWS221J001)
空军装备综合研究重点项目(KJ2022A000415).
文摘
目的探讨焦虑障碍患者及高危人群脑电特征,为军队征兵心理选拔及多质融合理论提供客观支持。方法招募焦虑障碍患者(焦虑障碍组,n=38)、焦虑障碍高危者(焦虑高危组,n=39)及健康人(正常组,n=38)并收集其脑电数据,使用eeglab软件对3组被试的多质融合指标[功率谱密度(PSD)、时频幅值、功能连接)进行分析,考察PSD、加权相位延迟指数(wPLI)能否用作评估焦虑障碍的脑异常指标;采用Python 2.0 Scikit-Learn包的支持向量机与K近邻分类器对3组被试进行二分类。结果在δ、θ和α低频频段,3组被试PSD差异显著。PSD在δ频段组间主效应差异有统计学意义(F=97.55,P<0.001),焦虑障碍组(6.16±0.61)>焦虑高危组(5.22±0.73)>正常组(3.36±0.06);PSD在θ频段组间主效应差异有统计学意义(F=65.87,P<0.001),焦虑障碍组(2.25±0.07)>焦虑高危组(2.23±0.08)>正常组(1.34±0.39);PSD在α频段组间主效应差异有统计学意义(F=178.73,P<0.001),焦虑障碍组(2.02±0.45)>焦虑高危组(1.94±0.57)>正常组(0.98±0.02)。在β1、β2及γ高频频段,焦虑高危组前额叶(FP1、FP2)和颞叶(T3、T4)区PSD有上升波动。在β1频段焦虑障碍组与正常组的wPLI分别在TP7-FC3电极对(t=2.45,P<0.05)与T5-FC3电极对(t=-3.01,P<0.05)的差异有统计学意义。结合行为学、频域、时频和功能连接4种特征筛选指标应用于机器学习,多质融合指标较单纯行为学指标识别焦虑高危者与正常人的准确率从75.00%提高到82.61%。结论利用机器学习对脑电指标进行分类,结合多质融合理论可作为提高区分焦虑障碍人群的潜在特征,在未来征兵心理选拔与临床评估中具有前瞻性意义。
关键词
焦虑障碍
焦虑高危
脑电图
功能连接
机器学习
Keywords
anxiety disorders
high risk of anxiety
electroencephalogram
functional connectivity
machine learning
分类号
R749 [医药卫生—神经病学与精神病学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于焦虑障碍患者及高危人群的脑电图研究
冯廷炜
冯博
侯依琳
任垒
毋琳
李丹阳
杨伟
张鹏
王步遥
李红政
王卉
王秀超
刘旭峰
《海军军医大学学报》
CAS
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部