期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
维持性血液透析患者水盐控制行为阶段转变与社会支持的相关性分析 被引量:4
1
作者 张真真 崔文英 +2 位作者 王艳玲 计丹英 孙柳 《中国血液净化》 2014年第8期577-579,共3页
目的调查维持性血液透析(maintenance hemodialysis,MHD)患者水盐控制行为的阶段变化情况和社会支持情况,探讨社会支持对患者水盐控制行为转变的影响,为实施有效的护理干预提供依据。方法采用行为阶段转变问卷和社会支持评定量表调查10... 目的调查维持性血液透析(maintenance hemodialysis,MHD)患者水盐控制行为的阶段变化情况和社会支持情况,探讨社会支持对患者水盐控制行为转变的影响,为实施有效的护理干预提供依据。方法采用行为阶段转变问卷和社会支持评定量表调查104名门诊MHD患者的水盐控制行为和社会支持状况。结果患者水盐控制行为阶段分布为无意识阶段16%、有意识阶段10%、准备阶段19%、行动阶段14%、维持阶段40%。患者的社会支持水平36.35±10.67高于全国常模(34.56±3.73),不同行为阶段患者的社会支持水平差异有统计学意义(F=2.888 P<0.05),同时婚姻状况也影响患者的水盐控制行为(χ2=6.359,P<0.01)。结论 MHD患者所获得的社会支持水平影响其水盐控制行为阶段。处于行动阶段和维持阶段的患者主观支持和社会支持水平更高,血液透析护士提供水盐控制指导和干预时应重视社会支持情况对患者的影响。 展开更多
关键词 维持性血液透析 行为分阶段转变 健康教育
在线阅读 下载PDF
Histopathological Diagnosis System for Gastritis Using Deep Learning Algorithm 被引量:2
2
作者 Wei Ba Shuhao Wang +3 位作者 Cancheng Liu Yuefeng Wang Huaiyin Shi Zhigang Song 《Chinese Medical Sciences Journal》 CAS CSCD 2021年第3期204-209,共6页
Objective To develope a deep learning algorithm for pathological classification of chronic gastritis and assess its performance using whole-slide images(WSIs).Methods We retrospectively collected 1,250 gastric biopsy ... Objective To develope a deep learning algorithm for pathological classification of chronic gastritis and assess its performance using whole-slide images(WSIs).Methods We retrospectively collected 1,250 gastric biopsy specimens(1,128 gastritis,122 normal mucosa)from PLA General Hospital.The deep learning algorithm based on DeepLab v3(ResNet-50)architecture was trained and validated using 1,008 WSIs and 100 WSIs,respectively.The diagnostic performance of the algorithm was tested on an independent test set of 142 WSIs,with the pathologists’consensus diagnosis as the gold standard.Results The receiver operating characteristic(ROC)curves were generated for chronic superficial gastritis(CSuG),chronic active gastritis(CAcG),and chronic atrophic gastritis(CAtG)in the test set,respectively.The areas under the ROC curves(AUCs)of the algorithm for CSuG,CAcG,and CAtG were 0.882,0.905 and 0.910,respectively.The sensitivity and specificity of the deep learning algorithm for the classification of CSuG,CAcG,and CAtG were 0.790 and 1.000(accuracy 0.880),0.985 and 0.829(accuracy 0.901),0.952 and 0.992(accuracy 0.986),respectively.The overall predicted accuracy for three different types of gastritis was 0.867.By flagging the suspicious regions identified by the algorithm in WSI,a more transparent and interpretable diagnosis can be generated.Conclusion The deep learning algorithm achieved high accuracy for chronic gastritis classification using WSIs.By pre-highlighting the different gastritis regions,it might be used as an auxiliary diagnostic tool to improve the work efficiency of pathologists. 展开更多
关键词 artificial intelligence deep learning ALGORITHM GASTRITIS whole-slide pathological images
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部