期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于数据关联狄利克雷混合模型的电网净负荷不确定性表征研究
被引量:
7
1
作者
李远征
孙天乐
+2 位作者
刘云
赵勇
曾志刚
《自动化学报》
EI
CAS
CSCD
北大核心
2022年第3期747-761,共15页
针对电网净负荷时序数据关联的特点,提出基于数据关联的狄利克雷混合模型(Data-relevance Dirichlet process mixture model,DDPMM)来表征净负荷的不确定性.首先,使用狄利克雷混合模型对净负荷的观测数据与预测数据进行拟合,得到其混合...
针对电网净负荷时序数据关联的特点,提出基于数据关联的狄利克雷混合模型(Data-relevance Dirichlet process mixture model,DDPMM)来表征净负荷的不确定性.首先,使用狄利克雷混合模型对净负荷的观测数据与预测数据进行拟合,得到其混合概率模型;然后,提出考虑数据关联的变分贝叶斯推断方法,改进后验分布对该混合概率模型进行求解,从而得到混合模型的最优参数;最后,根据净负荷预测值的大小得到其对应的预测误差边缘概率分布,实现不确定性表征.本文基于比利时电网的净负荷数据进行检验,算例结果表明:与传统的狄利克雷混合模型和高斯混合模型(Gaussian mixture model,GMM)等方法相比,所提出的基于数据关联狄利克雷混合模型可以更为有效地表征净负荷的不确定性.
展开更多
关键词
狄利克雷混合模型
净负荷
不确定性表征
时序序列
预测误差
在线阅读
下载PDF
职称材料
题名
基于数据关联狄利克雷混合模型的电网净负荷不确定性表征研究
被引量:
7
1
作者
李远征
孙天乐
刘云
赵勇
曾志刚
机构
华中科技大学人工智能与自动化学院
中国−测控技术“一带一路”联合实验室
华南理工大学电力学院
出处
《自动化学报》
EI
CAS
CSCD
北大核心
2022年第3期747-761,共15页
基金
国家自然科学基金(62073148)
腾讯—犀牛鸟基金(RAGR20210102)资助。
文摘
针对电网净负荷时序数据关联的特点,提出基于数据关联的狄利克雷混合模型(Data-relevance Dirichlet process mixture model,DDPMM)来表征净负荷的不确定性.首先,使用狄利克雷混合模型对净负荷的观测数据与预测数据进行拟合,得到其混合概率模型;然后,提出考虑数据关联的变分贝叶斯推断方法,改进后验分布对该混合概率模型进行求解,从而得到混合模型的最优参数;最后,根据净负荷预测值的大小得到其对应的预测误差边缘概率分布,实现不确定性表征.本文基于比利时电网的净负荷数据进行检验,算例结果表明:与传统的狄利克雷混合模型和高斯混合模型(Gaussian mixture model,GMM)等方法相比,所提出的基于数据关联狄利克雷混合模型可以更为有效地表征净负荷的不确定性.
关键词
狄利克雷混合模型
净负荷
不确定性表征
时序序列
预测误差
Keywords
Dirichlet process mixture model(DPMM)
net load
uncertain characterization
time sequence
forecast error
分类号
TM714 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于数据关联狄利克雷混合模型的电网净负荷不确定性表征研究
李远征
孙天乐
刘云
赵勇
曾志刚
《自动化学报》
EI
CAS
CSCD
北大核心
2022
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部