期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于先验聚类的机电设备环境参数异常检测算法
1
作者 邢鹏 李新娥 《现代电子技术》 北大核心 2025年第6期78-84,共7页
传统的聚类异常数据检测算法在处理高维度、大数据量且异常值分布杂乱的机电设备环境参数时,存在聚类效果差和检测效率低的问题。为此,在原有异常检测算法的基础上提出一种基于先验聚类的机电设备环境参数异常检测算法。该算法改用历史... 传统的聚类异常数据检测算法在处理高维度、大数据量且异常值分布杂乱的机电设备环境参数时,存在聚类效果差和检测效率低的问题。为此,在原有异常检测算法的基础上提出一种基于先验聚类的机电设备环境参数异常检测算法。该算法改用历史数据构建先验聚类,确保聚类构建不会受太多异常环境参数所影响;在选取聚类中心时引入密集度的概念,以确保聚类中心的可靠性,并在选取聚类中心过程中去除已选聚类中心周围的数据点,防止选取的聚类中心集中在某一区域,以此提升聚类效果。进行异常检测时,依次将待检测数据放入先验聚类中进行匹配,一旦测试数据无法匹配任何一个已知聚类,则将其标记为异常数据。实验结果表明:所提算法在机电设备环境参数的异常检测方面具有检测率高、误报率低的特点,在2000例数据异常检测中,其检测准确率达到了97.5%,优于DBSCAN算法的97%以及基础K-means算法的86%;同时,误检率低至0.0106,优于DBSCAN算法的0.0239和基础K-means算法的0.0228。改进后的模型较基础K-means算法和DBSCAN算法在机电设备环境参数异常检测中检测效果更佳,在机电设备环境异常数据检测上具有良好的性能。 展开更多
关键词 机电设备 环境参数 异常数据检测 先验聚类 K-means算法 密集度 聚类匹配
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部