期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于双残差超密集网络的多模态医学图像融合 被引量:6
1
作者 王丽芳 王蕊芳 +3 位作者 蔺素珍 秦品乐 高媛 张晋 《计算机科学》 CSCD 北大核心 2021年第2期160-166,共7页
针对基于残差网络和密集网络的图像融合方法存在网络中间层的部分有用信息丢失和融合图像细节不清晰的问题,提出了基于双残差超密集网络(Dual Residual Hyper-Densely Networks,DRHDNs)的多模态医学图像融合方法。DRHDNs分为特征提取和... 针对基于残差网络和密集网络的图像融合方法存在网络中间层的部分有用信息丢失和融合图像细节不清晰的问题,提出了基于双残差超密集网络(Dual Residual Hyper-Densely Networks,DRHDNs)的多模态医学图像融合方法。DRHDNs分为特征提取和特征融合两部分。特征提取部分通过将超密集连接与残差学习相结合,构造出双残差超密集块,用于提取特征,其中超密集连接不仅发生在同一路径的层之间,还发生在不同路径的层之间,这种连接使特征提取更充分,细节信息更丰富,并且对源图像进行了初步的特征融合。特征融合部分则进行最终的融合。通过实验将其与另外6种图像融合方法对4组脑部图像进行了融合比较,并根据4种评价指标进行了客观比较。结果显示,DRHDNs在保留细节、对比度和清晰度等方面都有很好的表现,其融合图像细节信息丰富并且清晰,便于疾病的诊断。 展开更多
关键词 多模态 医学图像融合 双残差学习 超密集连接 卷积网络(CNN)
在线阅读 下载PDF
基于多尺度边缘保持分解与PCNN的医学图像融合 被引量:8
2
作者 郭淑娟 高媛 +1 位作者 秦品乐 王丽芳 《计算机工程》 CAS CSCD 北大核心 2021年第3期276-283,共8页
在医学图像融合过程中,传统多尺度分析方法多采用线性滤波器,由于无法保留图像边缘特征导致分解阶段的强边缘处出现模糊,从而产生光晕。为提高融合图像的视觉感知效果,通过结合多尺度边缘保持分解方法与脉冲耦合神经网络(PCNN),提出一... 在医学图像融合过程中,传统多尺度分析方法多采用线性滤波器,由于无法保留图像边缘特征导致分解阶段的强边缘处出现模糊,从而产生光晕。为提高融合图像的视觉感知效果,通过结合多尺度边缘保持分解方法与脉冲耦合神经网络(PCNN),提出一种新的图像融合方法。对源图像进行加权最小二乘滤波分解得到图像的基础层和细节层,采用高斯滤波器对基础层进行二次分解得到低频层和边缘层,将分解过程中每级边缘层和细节层叠加构建高频层,并引入非下采样方向滤波器组进行方向分析。在此基础上,利用改进的空间频率以及区域能量激励PCNN融合高频层和低频层,通过逆变换得到最终的融合图像。实验结果表明,该方法能够突出医学图像的边缘轮廓并增强图像细节,可将更多的显著特征从源图像分离并转移到融合图像中。 展开更多
关键词 加权最小二乘滤波 非下采样方向滤波器组 边缘保持分解 多尺度分析 脉冲耦合神经网络 医学图像融合
在线阅读 下载PDF
局部全局特征耦合与交叉尺度注意的医学图像融合 被引量:3
3
作者 张炯 王丽芳 +3 位作者 蔺素珍 秦品乐 米嘉 刘阳 《计算机工程》 CAS CSCD 北大核心 2023年第3期238-247,共10页
现有基于深度学习的多模态医学图像融合方法存在全局特征表示能力不足的问题。对此,提出一种基于局部全局特征耦合与交叉尺度注意的医学图像融合方法。该方法由编码器、融合规则和解码器三部分组成。编码器中采用并行的卷积神经网络(CNN... 现有基于深度学习的多模态医学图像融合方法存在全局特征表示能力不足的问题。对此,提出一种基于局部全局特征耦合与交叉尺度注意的医学图像融合方法。该方法由编码器、融合规则和解码器三部分组成。编码器中采用并行的卷积神经网络(CNN)和Transformer双分支网络分别提取图像的局部特征与全局表示。在不同尺度下,通过特征耦合模块将CNN分支的局部特征嵌入Transformer分支的全局特征表示中,最大程度地结合互补特征,同时引入交叉尺度注意模块实现对多尺度特征表示的有效利用。编码器提取待融合原始图像的局部、全局以及多尺度特征表示,根据融合规则融合不同源图像的特征表示后再输入到解码器中生成融合图像。实验结果表明,与CBF、PAPCNN、IFCNN、DenseFuse和U2Fusion方法相比,该方法在特征互信息、空间频率、边缘信息传递因子、结构相似度、感知图像融合质量这5个评价指标上分别平均提高6.29%、3.58%、29.01%、5.34%、5.77%,融合图像保留了更清晰的纹理细节和更高的对比度,便于疾病的诊断与治疗。 展开更多
关键词 医学图像融合 编码器-解码器网络 Transformer网络 特征耦合 交叉尺度注意
在线阅读 下载PDF
基于深度学习的牙齿嵌塞自动判别方法
4
作者 王志江 秦品乐 +3 位作者 柴锐 武峰 程一彤 史玥 《计算机工程》 CAS CSCD 北大核心 2022年第4期307-313,共7页
食物嵌塞是口腔常见病征,容易引发局部牙龈红肿、溢脓、龋齿等口腔问题,给患者带来极大的痛苦和不便。目前临床上难以自动筛查嵌塞牙齿,且传统的锥形束CT重建方法的准确度及精度均有待提高。提出一种牙齿嵌塞自动化判断的方法,对牙齿模... 食物嵌塞是口腔常见病征,容易引发局部牙龈红肿、溢脓、龋齿等口腔问题,给患者带来极大的痛苦和不便。目前临床上难以自动筛查嵌塞牙齿,且传统的锥形束CT重建方法的准确度及精度均有待提高。提出一种牙齿嵌塞自动化判断的方法,对牙齿模型进行单个牙体的精准分割,在U-Net网络的基础上使用KPConv卷积核代替二维卷积核来构建分割网络,并使用图割方法优化分割结果。同时,采用平面拟合的方法将分割后的牙齿模型投影到水平和竖直平面上,在平面上求出牙齿嵌塞特征,并利用支持向量机根据所求特征对牙齿的嵌塞情况进行判断。通过充分利用样本模型的几何结构信息,设计简化牙齿模型的几何采样及包含牙齿几何结构约束的图割方法提高网络模型的运算时间及精度。实验结果表明,该方法对牙齿模型的分割准确率为92%,对牙齿嵌塞的判断正确率为81%,能够为医生提供辅助诊断。 展开更多
关键词 深度学习 点云分割 牙齿分割 食物嵌塞 支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部