具有独特三维框架结构的钠超离子导体型磷酸钒钠是非常具有前景的钠电正极材料。在本工作中,两种碳源被选择作为原材料,通过溶胶凝胶法制备了碳包覆的磷酸钒钠。深入研究了不同炭材料对晶体结构、形貌特征、动力学特性以及电化学储钠特...具有独特三维框架结构的钠超离子导体型磷酸钒钠是非常具有前景的钠电正极材料。在本工作中,两种碳源被选择作为原材料,通过溶胶凝胶法制备了碳包覆的磷酸钒钠。深入研究了不同炭材料对晶体结构、形貌特征、动力学特性以及电化学储钠特性的影响。结果表明柠檬酸作为碳源制备得到的磷酸钒钠,具有更大的晶胞体积和更小的粒子尺寸,导致了拓宽的离子迁移通道和缩短的离子迁移路径,进而提高动力学特性。该材料表现出优异的电化学特性,在0.1 C下可以释放112.3 mAh g^(−1)的容量。在1 C循环200圈下容量保持率接近100%。由于快速的粒子导电特性,在2 C和5 C的大倍率循环下,该材料可以释放90.0和89.1 mAh g^(−1)的初始容量,循环200圈后保持率分别为92.7%和90%。因此,这种改性的磷酸钒钠电极材料可以作为优异的正极材料应用在钠电池领域。展开更多
锂硫电池因其高能量密度和低成本而成为最有发展前景的电化学储能器件之一。然而,多硫化物的“穿梭效应”、硫导电率低是锂硫电池商业化面临的主要挑战。本工作中,以Fe(NO)_(3)·9H_(2)O为铁源,NH4F为表面活性剂,通过简单的水热及...锂硫电池因其高能量密度和低成本而成为最有发展前景的电化学储能器件之一。然而,多硫化物的“穿梭效应”、硫导电率低是锂硫电池商业化面临的主要挑战。本工作中,以Fe(NO)_(3)·9H_(2)O为铁源,NH4F为表面活性剂,通过简单的水热及煅烧处理制备了Fe_(2)O_(3)纳米棒修饰炭布(CC)的柔性Fe_(2)O_(3)/CC复合材料。其中,Fe_(2)O_(3)中介孔的存在有利于电解质的渗透和充放电过程中锂离子的传输和扩散,同时其密集阵列暴露出的丰富活性位点可以实现多硫化物的高效吸附和快速转化,降低多硫化物的穿梭效应。电化学分析显示:Fe_(2)O_(3)/CC正极在0.1 C(1 C=1672 mA g^(−1))的电流密度下具有1250 mAh g^(-1)的高放电比容量,经100圈循环后比容量保持在789 mAh g^(-1)。在2 C的倍率下循环1000圈后仍能达到576 mAh g^(-1)的放电比容量,容量保持率为70%,明显优于对比样品。因此,Fe_(2)O_(3)/CC能够很好地抑制多硫化物的穿梭,提高电池倍率性能和循环稳定性。展开更多
文摘具有独特三维框架结构的钠超离子导体型磷酸钒钠是非常具有前景的钠电正极材料。在本工作中,两种碳源被选择作为原材料,通过溶胶凝胶法制备了碳包覆的磷酸钒钠。深入研究了不同炭材料对晶体结构、形貌特征、动力学特性以及电化学储钠特性的影响。结果表明柠檬酸作为碳源制备得到的磷酸钒钠,具有更大的晶胞体积和更小的粒子尺寸,导致了拓宽的离子迁移通道和缩短的离子迁移路径,进而提高动力学特性。该材料表现出优异的电化学特性,在0.1 C下可以释放112.3 mAh g^(−1)的容量。在1 C循环200圈下容量保持率接近100%。由于快速的粒子导电特性,在2 C和5 C的大倍率循环下,该材料可以释放90.0和89.1 mAh g^(−1)的初始容量,循环200圈后保持率分别为92.7%和90%。因此,这种改性的磷酸钒钠电极材料可以作为优异的正极材料应用在钠电池领域。
文摘锂硫电池因其高能量密度和低成本而成为最有发展前景的电化学储能器件之一。然而,多硫化物的“穿梭效应”、硫导电率低是锂硫电池商业化面临的主要挑战。本工作中,以Fe(NO)_(3)·9H_(2)O为铁源,NH4F为表面活性剂,通过简单的水热及煅烧处理制备了Fe_(2)O_(3)纳米棒修饰炭布(CC)的柔性Fe_(2)O_(3)/CC复合材料。其中,Fe_(2)O_(3)中介孔的存在有利于电解质的渗透和充放电过程中锂离子的传输和扩散,同时其密集阵列暴露出的丰富活性位点可以实现多硫化物的高效吸附和快速转化,降低多硫化物的穿梭效应。电化学分析显示:Fe_(2)O_(3)/CC正极在0.1 C(1 C=1672 mA g^(−1))的电流密度下具有1250 mAh g^(-1)的高放电比容量,经100圈循环后比容量保持在789 mAh g^(-1)。在2 C的倍率下循环1000圈后仍能达到576 mAh g^(-1)的放电比容量,容量保持率为70%,明显优于对比样品。因此,Fe_(2)O_(3)/CC能够很好地抑制多硫化物的穿梭,提高电池倍率性能和循环稳定性。