期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自适应多尺度特征融合网络的金属齿轮端面缺陷检测方法研究
被引量:
13
1
作者
王宸
杨帅
+3 位作者
周林
华珀玺
王生怀
吕江
《电子测量与仪器学报》
CSCD
北大核心
2023年第10期153-163,共11页
针对目前金属齿轮端面结构复杂,导致缺陷的小目标占比度高和尺度变化大引起的检测准确度低,难以满足企业实时在线检测需求等问题。本文基于YOLOv5s网络提出了一种基于自适应多尺度特征融合网络的金属齿轮端面缺陷检测方法(YOLO-Gear)。...
针对目前金属齿轮端面结构复杂,导致缺陷的小目标占比度高和尺度变化大引起的检测准确度低,难以满足企业实时在线检测需求等问题。本文基于YOLOv5s网络提出了一种基于自适应多尺度特征融合网络的金属齿轮端面缺陷检测方法(YOLO-Gear)。首先,搭建了一个齿轮端面缺陷检测试验台,并制作了齿轮端面缺陷数据集。然后,提出了自适应卷积注意力模块(convolutional block attention module-C3,CBAM-C3),CBAM-C3通过将通道注意力(channel attention module, CAM)和空间注意力(spartial attention module, SAM)相结合加强了对金属齿轮缺陷小目标缺陷自适应的特征学习与特征提取,及时对模型中的权重参数进行学习和优化,提高了模型对小目标缺陷的检测准确度;最后,提出了重复加权双向特征金字塔网络(bidirectional feature pyramid network, BiFPN),通过自适应控制不同尺度的特征图之间的融合程度,提高了模型对缺陷多尺度检测能力。试验表明,YOLO-Gear模型在齿轮端面缺陷测试集上的平均精度达到了99.2%,F1值为0.99,FPS值为33。相较于其他深度学习模型,本文提出的YOLO-Gear模型提高了检测的精度和效率,能够满足企业的实时在线检测需求。
展开更多
关键词
齿轮端面
YOLOv5s
CBAM
BiFPN
缺陷检测
在线阅读
下载PDF
职称材料
题名
基于自适应多尺度特征融合网络的金属齿轮端面缺陷检测方法研究
被引量:
13
1
作者
王宸
杨帅
周林
华珀玺
王生怀
吕江
机构
湖北
汽车
工业学院机械工程学院
中国工程科技十堰产业技术研究院
上海大学上海市智能制造与机器人重点实验室
东风汽车
零部件
(
集团
)
有限公司
刃量具
分公司
出处
《电子测量与仪器学报》
CSCD
北大核心
2023年第10期153-163,共11页
基金
国家自然科学基金(51475150)
教育部人文社科项目(20YJCZH150)
+3 种基金
湖北省重点研发计划项目(2021BAA056)
湖北省高等学校中青年科技创新团队计划项目(T20200018)
湖北省社科基金(21Q174)
湖北汽车工业学院博士基金(BK201905)项目资助。
文摘
针对目前金属齿轮端面结构复杂,导致缺陷的小目标占比度高和尺度变化大引起的检测准确度低,难以满足企业实时在线检测需求等问题。本文基于YOLOv5s网络提出了一种基于自适应多尺度特征融合网络的金属齿轮端面缺陷检测方法(YOLO-Gear)。首先,搭建了一个齿轮端面缺陷检测试验台,并制作了齿轮端面缺陷数据集。然后,提出了自适应卷积注意力模块(convolutional block attention module-C3,CBAM-C3),CBAM-C3通过将通道注意力(channel attention module, CAM)和空间注意力(spartial attention module, SAM)相结合加强了对金属齿轮缺陷小目标缺陷自适应的特征学习与特征提取,及时对模型中的权重参数进行学习和优化,提高了模型对小目标缺陷的检测准确度;最后,提出了重复加权双向特征金字塔网络(bidirectional feature pyramid network, BiFPN),通过自适应控制不同尺度的特征图之间的融合程度,提高了模型对缺陷多尺度检测能力。试验表明,YOLO-Gear模型在齿轮端面缺陷测试集上的平均精度达到了99.2%,F1值为0.99,FPS值为33。相较于其他深度学习模型,本文提出的YOLO-Gear模型提高了检测的精度和效率,能够满足企业的实时在线检测需求。
关键词
齿轮端面
YOLOv5s
CBAM
BiFPN
缺陷检测
Keywords
gear end-face
YOLOv5s
CBAM
BiFPN
defect detection
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
TH164 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自适应多尺度特征融合网络的金属齿轮端面缺陷检测方法研究
王宸
杨帅
周林
华珀玺
王生怀
吕江
《电子测量与仪器学报》
CSCD
北大核心
2023
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部