期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进抗噪1D-CNN的旋转车轮动平衡状态监测 被引量:1
1
作者 周海超 关浩东 +2 位作者 王国林 张宇 赵春来 《振动.测试与诊断》 北大核心 2025年第2期309-315,412,413,共9页
针对实车旋转车轮动平衡状态难以实时监测及预判的问题,提出了一种融合注意力机制的抗噪一维卷积神经网络(noise resistant 1D convolutional neural network,简称NRCNN)的旋转车轮动平衡健康状态监测方法。首先,构建NRCNN模型,以在实... 针对实车旋转车轮动平衡状态难以实时监测及预判的问题,提出了一种融合注意力机制的抗噪一维卷积神经网络(noise resistant 1D convolutional neural network,简称NRCNN)的旋转车轮动平衡健康状态监测方法。首先,构建NRCNN模型,以在实车车轮上添加3种不同质量平衡块的方式获得3种不同速度下对应的旋转车轮动不平衡状态下的振动信息;其次,以高斯白噪声为噪声输入,对所测旋转车轮不同动平衡状态的振动信息进行处理,获得试验样本数据,并用其进行模型训练;然后,综合运用卷积运算机制和特征变换进行t分布随机邻域嵌入(t-distributed stochastic neighbor embedding,简称t-SNE)可视化显示,实现对不同动平衡状态的分类输出。结果表明,在不同信噪比的工况下,所提出的改进NRCNN模型旋转车轮的动平衡状态监测方法相比于传统一维卷积神经网络(1D convolutional neural network,简称1D-CNN)模型,展现出更高的诊断准确性,最高可达到99.95%。 展开更多
关键词 卷积神经网络 注意力机制 车轮动平衡 状态监测 高斯白噪声
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部