质子交换膜电解水(Proton Exchange Membrane Water Electrolysis,PEMWE)制氢技术具有响应速度快、氢气纯度高、电流密度大、适应波动性可再生能源等优点,是绿色制氢技术的重要发展方向。金属双极板作为PEM电解水电堆的重要组件,在运行...质子交换膜电解水(Proton Exchange Membrane Water Electrolysis,PEMWE)制氢技术具有响应速度快、氢气纯度高、电流密度大、适应波动性可再生能源等优点,是绿色制氢技术的重要发展方向。金属双极板作为PEM电解水电堆的重要组件,在运行过程中会发生氧化、腐蚀等反应,引起界面接触电阻的增加,从而缩短电堆寿命以及降低水电解效率。因此,在双极板表面制备低成本、高性能的防护涂层已成为PEM制氢技术的重要研究方向。在该技术背景下,概述了电解水制氢技术原理及现状,介绍了PEM制氢双极板材料及其特性,系统总结了PEM制氢双极板防护涂层的研究进展,包括金属、金属氮化物、导电氧化物、金属磷化物和非晶碳基涂层的制备方法、结构,及其在PEM电解水模拟工况下的耐腐蚀性能、接触电阻和应用验证等数据。从制备成本、腐蚀前后接触电阻变化、耐高电位腐蚀性能等方面阐述了不同涂层的主要优点和缺点,并对PEM制氢双极板涂层及其制备技术的发展趋势进行了展望,为今后PEM电解水制氢双极板涂层材料的设计开发和应用提供借鉴。展开更多
文摘质子交换膜电解水(Proton Exchange Membrane Water Electrolysis,PEMWE)制氢技术具有响应速度快、氢气纯度高、电流密度大、适应波动性可再生能源等优点,是绿色制氢技术的重要发展方向。金属双极板作为PEM电解水电堆的重要组件,在运行过程中会发生氧化、腐蚀等反应,引起界面接触电阻的增加,从而缩短电堆寿命以及降低水电解效率。因此,在双极板表面制备低成本、高性能的防护涂层已成为PEM制氢技术的重要研究方向。在该技术背景下,概述了电解水制氢技术原理及现状,介绍了PEM制氢双极板材料及其特性,系统总结了PEM制氢双极板防护涂层的研究进展,包括金属、金属氮化物、导电氧化物、金属磷化物和非晶碳基涂层的制备方法、结构,及其在PEM电解水模拟工况下的耐腐蚀性能、接触电阻和应用验证等数据。从制备成本、腐蚀前后接触电阻变化、耐高电位腐蚀性能等方面阐述了不同涂层的主要优点和缺点,并对PEM制氢双极板涂层及其制备技术的发展趋势进行了展望,为今后PEM电解水制氢双极板涂层材料的设计开发和应用提供借鉴。