期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于散射特征增强的SAR目标电磁仿真图像质量提升方法
被引量:
1
1
作者
张祥辉
封斯嘉
+4 位作者
马晓杰
张思乾
孙浩
计科峰
陈珲
《信号处理》
CSCD
北大核心
2023年第9期1573-1586,共14页
现阶段深度学习算法在对合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别时,通常面临着实测数据部分样本缺失的情况,利用电磁仿真数据进行辅助识别是有效途径之一。然而,仿真和实测数据存在不可避免的差异,现有仿真图像质量提升方...
现阶段深度学习算法在对合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别时,通常面临着实测数据部分样本缺失的情况,利用电磁仿真数据进行辅助识别是有效途径之一。然而,仿真和实测数据存在不可避免的差异,现有仿真图像质量提升方法更关注仿真和实测图像整体风格的相似性,忽略了面向识别的目标散射特征的重要性。针对上述问题,本文提出了一种基于散射特征增强的SAR目标电磁仿真图像质量提升方法。该方法在循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)框架下,改进损失函数,一方面使用最小二乘损失函数替代交叉熵损失函数,避免了梯度消失,实现对目标纹理结构特征的迭代优化;另一方面引入MS-SSIM-L1损失函数,更好地保留生成图像的细节信息和结构轮廓,保持目标整体结构一致性,同时有效避免模型的过度学习。基于4类车辆目标仿真数据集和MSTAR实测数据集,利用目标轮廓、阴影轮廓和目标强度特征相似度指标,验证了本文方法增强了目标细节纹理和结构轮廓等散射特征。在此基础上,结合A-ConvNets网络开展了目标分类识别实验,相较于原始CycleGAN方法,本文方法在不同样本缺失条件下均提高了识别准确率。通过特征可视化,表明生成图像更接近实测图像的目标特征分布,验证了本文方法的有效性。
展开更多
关键词
合成孔径雷达图像
循环生成对抗网络
仿真图像
质量提升
目标识别
在线阅读
下载PDF
职称材料
题名
一种基于散射特征增强的SAR目标电磁仿真图像质量提升方法
被引量:
1
1
作者
张祥辉
封斯嘉
马晓杰
张思乾
孙浩
计科峰
陈珲
机构
国防科技
大学
电子
科学
学院
电子
信息
系统复杂电磁环境效应
国家
重点
实验室
东南大学信息科学与工程学院、毫米波国家重点实验室
出处
《信号处理》
CSCD
北大核心
2023年第9期1573-1586,共14页
基金
国家自然科学基金(62001480,61971426)
湖南省自然科学基金(2021JJ40684)。
文摘
现阶段深度学习算法在对合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别时,通常面临着实测数据部分样本缺失的情况,利用电磁仿真数据进行辅助识别是有效途径之一。然而,仿真和实测数据存在不可避免的差异,现有仿真图像质量提升方法更关注仿真和实测图像整体风格的相似性,忽略了面向识别的目标散射特征的重要性。针对上述问题,本文提出了一种基于散射特征增强的SAR目标电磁仿真图像质量提升方法。该方法在循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)框架下,改进损失函数,一方面使用最小二乘损失函数替代交叉熵损失函数,避免了梯度消失,实现对目标纹理结构特征的迭代优化;另一方面引入MS-SSIM-L1损失函数,更好地保留生成图像的细节信息和结构轮廓,保持目标整体结构一致性,同时有效避免模型的过度学习。基于4类车辆目标仿真数据集和MSTAR实测数据集,利用目标轮廓、阴影轮廓和目标强度特征相似度指标,验证了本文方法增强了目标细节纹理和结构轮廓等散射特征。在此基础上,结合A-ConvNets网络开展了目标分类识别实验,相较于原始CycleGAN方法,本文方法在不同样本缺失条件下均提高了识别准确率。通过特征可视化,表明生成图像更接近实测图像的目标特征分布,验证了本文方法的有效性。
关键词
合成孔径雷达图像
循环生成对抗网络
仿真图像
质量提升
目标识别
Keywords
synthetic aperture radar image
cycle generative adversarial networks
simulation image
quality improve⁃ment
target recognition
分类号
TP751 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于散射特征增强的SAR目标电磁仿真图像质量提升方法
张祥辉
封斯嘉
马晓杰
张思乾
孙浩
计科峰
陈珲
《信号处理》
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部