期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一类微分差分可积方程的新精确解
1
作者
陈守婷
高恒
李琪
《石河子大学学报(自然科学版)》
CAS
北大核心
2020年第6期787-792,共6页
作为一个著名的微分差分可积系统,Ablowitz-Ladik(AL)链由于其具有完全可积系统理论的支持,以及在非线性光学等领域中的应用,得到了广泛关注和研究,同时,微分差分可积方程的精确求解一直以来都是孤立子理论中的一个非常重要的课题,而朗...
作为一个著名的微分差分可积系统,Ablowitz-Ladik(AL)链由于其具有完全可积系统理论的支持,以及在非线性光学等领域中的应用,得到了广泛关注和研究,同时,微分差分可积方程的精确求解一直以来都是孤立子理论中的一个非常重要的课题,而朗斯基技巧是众多求解方法中一种高效直观的方法,因此,本文借助双Casoratian(离散形式的朗斯基)技巧和构造双Casorati行列式元素的矩阵方法,研究AL链一个具有双线性形式的微分差分方程,先将矩阵取成Jordan阵得到该方程具有双Casorati行列式形式的Matveev解,再将矩阵设成一个由特殊下三角矩阵和Jordan矩阵构成的准对角线矩阵形式,构造出具有双Casorati行列式形式的类有理解和Matveev解相互作用后的混合解,然后在将双Casorati行列式元素选取若干不同的形式后,得出Matveev解及其混合解在对应情况下的具体表达式。
展开更多
关键词
Ablowitz-Ladik链
微分差分可积方程
双Casoratian技巧
Matveev解
混合解
在线阅读
下载PDF
职称材料
题名
一类微分差分可积方程的新精确解
1
作者
陈守婷
高恒
李琪
机构
徐州
工
程学院
数学
与统计学院
东华理工大学数学系
出处
《石河子大学学报(自然科学版)》
CAS
北大核心
2020年第6期787-792,共6页
基金
国家自然科学基金(11301454,11561002)
江苏省六大人才高峰项目(2016-JY-081)。
文摘
作为一个著名的微分差分可积系统,Ablowitz-Ladik(AL)链由于其具有完全可积系统理论的支持,以及在非线性光学等领域中的应用,得到了广泛关注和研究,同时,微分差分可积方程的精确求解一直以来都是孤立子理论中的一个非常重要的课题,而朗斯基技巧是众多求解方法中一种高效直观的方法,因此,本文借助双Casoratian(离散形式的朗斯基)技巧和构造双Casorati行列式元素的矩阵方法,研究AL链一个具有双线性形式的微分差分方程,先将矩阵取成Jordan阵得到该方程具有双Casorati行列式形式的Matveev解,再将矩阵设成一个由特殊下三角矩阵和Jordan矩阵构成的准对角线矩阵形式,构造出具有双Casorati行列式形式的类有理解和Matveev解相互作用后的混合解,然后在将双Casorati行列式元素选取若干不同的形式后,得出Matveev解及其混合解在对应情况下的具体表达式。
关键词
Ablowitz-Ladik链
微分差分可积方程
双Casoratian技巧
Matveev解
混合解
Keywords
Ablowitz-Ladik lattice
differential-difference integrable equation
double Casoratian technique
Matveev solutions
interaction solutions
分类号
O175.29 [理学—基础数学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一类微分差分可积方程的新精确解
陈守婷
高恒
李琪
《石河子大学学报(自然科学版)》
CAS
北大核心
2020
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部