期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于稀疏编码的复杂机械振动信号盲分离方法 被引量:4
1
作者 王金东 王畅 +3 位作者 赵海洋 李彦阳 曹威龙 黄飞虎 《噪声与振动控制》 CSCD 北大核心 2024年第1期168-173,186,共7页
复杂机械振动信号激励源较多,故源信号之间互为相关源,且较难满足统计独立特性,导致传统盲源分离方法分离效果不佳。对此,提出一种基于信号稀疏编码的机械振动信号盲分离方法。盲源分离的关键在于对混合矩阵的精确估计,然而机械振源中... 复杂机械振动信号激励源较多,故源信号之间互为相关源,且较难满足统计独立特性,导致传统盲源分离方法分离效果不佳。对此,提出一种基于信号稀疏编码的机械振动信号盲分离方法。盲源分离的关键在于对混合矩阵的精确估计,然而机械振源中相关成分的存在严重影响混合矩阵的估计。对此,首先对观测信号进行短时傅里叶变换,增加信号稀疏性;然后利用稀疏编码筛选出具备直线聚类特性的时频观测点,利用K均值(K-means)聚类法找到聚类中心;最后利用所提筛选规则找到估计的混合矩阵,重构出源信号。通过对往复压缩机故障数据的分析,验证了所提方法有效性。 展开更多
关键词 振动与波 盲源分离 相关源 稀疏编码 直线聚类 压缩机故障信号
在线阅读 下载PDF
基于改进的CEEMDAN和CHDE的往复压缩机气阀故障诊断 被引量:2
2
作者 宋美萍 王金东 +1 位作者 赵海洋 李艳春 《机床与液压》 北大核心 2023年第1期202-207,共6页
由于往复压缩机的振动信号具有非线性非平稳性的特点,为进一步提高故障识别率,提出对自适应噪声完备集合经验模态分解(CEEMDAN)进行改进并与复合层次散布熵相结合的往复压缩机气阀故障诊断方法。利用正交性为指标选择最佳模态函数,有效... 由于往复压缩机的振动信号具有非线性非平稳性的特点,为进一步提高故障识别率,提出对自适应噪声完备集合经验模态分解(CEEMDAN)进行改进并与复合层次散布熵相结合的往复压缩机气阀故障诊断方法。利用正交性为指标选择最佳模态函数,有效提高了CEEMDAN对非平稳性信号的分解精度,减少噪声残差;采用峭度作为评价指标对分解后的IMF分量进行筛选并重构信号,求解重构信号的复合层次散布熵,提取故障特征向量;利用支持向量机进行分类识别。试验结果验证了该方法的有效性和优越性。 展开更多
关键词 CEEMDAN 复合层次散布熵 信号重构 往复压缩机 故障诊断
在线阅读 下载PDF
基于MRSSD与MSDE的滑动轴承故障诊断方法 被引量:3
3
作者 王金东 刘著 +2 位作者 赵海洋 张鹏 王智伟 《轴承》 北大核心 2020年第9期50-56,共7页
针对往复压缩机轴承振动信号强烈的非平稳、非线性的特点,提出了一种基于多重共振稀疏分解(MRSSD)与多尺度符号动力学熵(MSDE)相结合的往复压缩机滑动轴承故障诊断方法。首先,设置高、低品质因子的取值范围,求出能表示故障冲击成分的低... 针对往复压缩机轴承振动信号强烈的非平稳、非线性的特点,提出了一种基于多重共振稀疏分解(MRSSD)与多尺度符号动力学熵(MSDE)相结合的往复压缩机滑动轴承故障诊断方法。首先,设置高、低品质因子的取值范围,求出能表示故障冲击成分的低品质因子值,对信号进行共振稀疏分解,形成高、低共振分量;然后,根据高共振分量的峭度值评定分解结果,峭度值小于设定阈值时改变高品质因子值,继续对低共振分量进行共振稀疏分解,峭度值大于设定阈值时终止分解;最后,计算最终所得低共振分量的多尺度符号动力学熵,构造故障特征向量,并利用支持向量机进行故障特征识别。试验结果表明,该方法可以逐步降低干扰成分的影响,有效诊断往复压缩机滑动轴承故障,与基于遗传算法优化品质因子的共振稀疏分解和多尺度排列熵(MPE)相结合的方法相比,故障识别率显著提高。 展开更多
关键词 滑动轴承 故障诊断 压缩机 共振稀疏分解 符号动力学熵
在线阅读 下载PDF
基于IUPEMD和RCMFE的往复压缩机气阀故障诊断 被引量:2
4
作者 宋美萍 王金东 +1 位作者 赵海洋 于德龙 《机床与液压》 北大核心 2023年第7期208-213,共6页
由于往复压缩机的振动信号非线性、非平稳性的特点,为进一步提高故障识别率,提出一种基于改进的均匀相位经验模态分解(IUPEMD)和精细复合多尺度模糊熵(RCMFE)的往复压缩机气阀故障诊断方法。采用IUPEMD方法对信号进行分解,通过不同的参... 由于往复压缩机的振动信号非线性、非平稳性的特点,为进一步提高故障识别率,提出一种基于改进的均匀相位经验模态分解(IUPEMD)和精细复合多尺度模糊熵(RCMFE)的往复压缩机气阀故障诊断方法。采用IUPEMD方法对信号进行分解,通过不同的参数组合,利用正交性为指标选择最佳IMF分量,有效提高了IUPEMD对非平稳性信号的分解精度,减少模态混叠现象;以峭度为评价指标对分解后的IMF分量进行筛选,并重构信号,求解重构信号的RCMFE,提取故障特征向量;最后,将特征向量输入到支持向量机进行分类识别。试验结果验证了该方法的有效性和优越性。 展开更多
关键词 改进的均匀相位经验模态分解 精细复合多尺度模糊熵 气阀 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部