期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于时频联合深度学习的地震数据重建
被引量:
12
1
作者
张岩
刘小秋
+1 位作者
李杰
董宏丽
《吉林大学学报(地球科学版)》
CAS
CSCD
北大核心
2023年第1期283-296,共14页
地质条件和采集环境等因素的影响往往导致在地质勘探过程中无法获取完备的地震数据,对后续地质解释工作造成影响。随着计算机硬件的发展及基于卷积神经网络的地震数据处理方法的应用,越来越多的深度学习方法应用于地震数据规则化,当前...
地质条件和采集环境等因素的影响往往导致在地质勘探过程中无法获取完备的地震数据,对后续地质解释工作造成影响。随着计算机硬件的发展及基于卷积神经网络的地震数据处理方法的应用,越来越多的深度学习方法应用于地震数据规则化,当前此类方法通常局限在时域范围内处理数据,导致重建数据过于平滑,纹理细节信息缺失。本文提出一种联合时频域特征的卷积神经网络模型,通过在地震数据的时域和傅里叶域上进行联合约束,学习地震数据在时域和傅里叶域的多维度分布特征,重建欠采样地震数据,修正联合损失函数的权重,调整卷积神经网络学习的注意力;采用多级可调节的残差块构建卷积神经网络中间层,提高特征提取能力,根据任务的需要调节残差块数量,平衡网络的精度与效率。实验结果表明,本文提出的方法与双三次插值、基于块匹配的3D协同滤波、深超分辨率网络、增强深度学习超分辨率重建网络等方法对比,具有更好的细节保持效果和鲁棒性。
展开更多
关键词
地震数据规则化
卷积神经网络
时频联合
深度学习
傅里叶变换
在线阅读
下载PDF
职称材料
题名
基于时频联合深度学习的地震数据重建
被引量:
12
1
作者
张岩
刘小秋
李杰
董宏丽
机构
东北
石油
大学
计算机与信息技术
学院
东北石油大学人工智能能源研究学院
黑龙江省网络化与
智能
控制重点实验室
出处
《吉林大学学报(地球科学版)》
CAS
CSCD
北大核心
2023年第1期283-296,共14页
基金
国家自然科学基金项目(U21A2019,61873058)
文摘
地质条件和采集环境等因素的影响往往导致在地质勘探过程中无法获取完备的地震数据,对后续地质解释工作造成影响。随着计算机硬件的发展及基于卷积神经网络的地震数据处理方法的应用,越来越多的深度学习方法应用于地震数据规则化,当前此类方法通常局限在时域范围内处理数据,导致重建数据过于平滑,纹理细节信息缺失。本文提出一种联合时频域特征的卷积神经网络模型,通过在地震数据的时域和傅里叶域上进行联合约束,学习地震数据在时域和傅里叶域的多维度分布特征,重建欠采样地震数据,修正联合损失函数的权重,调整卷积神经网络学习的注意力;采用多级可调节的残差块构建卷积神经网络中间层,提高特征提取能力,根据任务的需要调节残差块数量,平衡网络的精度与效率。实验结果表明,本文提出的方法与双三次插值、基于块匹配的3D协同滤波、深超分辨率网络、增强深度学习超分辨率重建网络等方法对比,具有更好的细节保持效果和鲁棒性。
关键词
地震数据规则化
卷积神经网络
时频联合
深度学习
傅里叶变换
Keywords
seismic data regularization
convolutional neural network
time-frequency combination
deep learning
Fourier transform
分类号
P631.4 [天文地球—地质矿产勘探]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于时频联合深度学习的地震数据重建
张岩
刘小秋
李杰
董宏丽
《吉林大学学报(地球科学版)》
CAS
CSCD
北大核心
2023
12
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部