为提升高速公路合流区交通运行效率及驾乘人员舒适性,在保障安全的前提下,面向人工驾驶车辆(Human Driven Vehicles,HDV)和智能网联车辆(Connected and Autonomous Vehicles,CAV)混行的异质交通流环境,提出高速公路CAV合流次序优化与轨...为提升高速公路合流区交通运行效率及驾乘人员舒适性,在保障安全的前提下,面向人工驾驶车辆(Human Driven Vehicles,HDV)和智能网联车辆(Connected and Autonomous Vehicles,CAV)混行的异质交通流环境,提出高速公路CAV合流次序优化与轨迹规划方法.首先,以车辆通行时间和延误作为合流区交通运行效率表征指标,建立合流次序优化函数,采用并调整蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)算法,获得最优合流次序;其次,依据合流次序,建立最小化加速度和急动度的CAV合流轨迹规划(Minimize Acceleration and Jerk Trajectory Planning,MAJTP)函数,运用最优控制理论,求解车辆纵向最优轨迹解析解,进而形成高速公路合流区CAV协同控制方法;最后,联合运用SUMO软件和PYTHON库,对本文所提方法进行交通仿真验证.仿真结果表明:在CAV渗透率分别为0.2、0.4、0.6和0.8时,相较于先进先出(First In First Out,FIFO)算法,基于MCTS算法的合流次序优化方法累积延误分别降低5.75%、8.84%、12.24%和11.06%;相较于最小化加速度的车辆轨迹规划(Minimize Acceleration Trajectory Planning,MATP)方法,MAJTP方法平均急动度更趋近于零,驾乘人员舒适性有所提升,验证了方法的有效性.研究成果可为高速公路合流区交通运行管控研究提供理论支持.展开更多
车辆临近交叉口的变道行为会制约交叉口通行效率的提升。基于此,本文提出一种网联车辆环境下城市道路交通流分段协同控制方法(Segmented Cooperative cOntrol Method for Urban Road Traffic Flow,SCOM-URTF),该方法采用双层优化模型,...车辆临近交叉口的变道行为会制约交叉口通行效率的提升。基于此,本文提出一种网联车辆环境下城市道路交通流分段协同控制方法(Segmented Cooperative cOntrol Method for Urban Road Traffic Flow,SCOM-URTF),该方法采用双层优化模型,实现路段功能区动态划分和路段—交叉口交通流的协同优化。上层模型设计了一种分车道速度诱导错位变道策略(Misaligned Lane-changing with Separated Lane Speed Guidance,ML-SLSG),通过纵向空间错位排列促成左转和右转车辆的快速变道,最小化车辆变道区长度,并均衡车道组交通流量;下层模型以最小化车均延误为目标,基于动态规划法协同优化网联车辆的轨迹与交叉口信号配时参数。仿真结果表明,ML-SLSG策略能有效缩短变道长度,在低、中和高这3种交通负荷下,本文提出的车辆纵向轨迹优化模型能使交叉口车均延误减少5.9%~8.0%,且与信号配时协同优化后,车均延误可再降低3.7%~22.8%。与同类方法对比研究表明,SCOM-URTF更适合多种驾驶行为相互协调的交通环境。敏感性分析显示,更高的CAV渗透率和道路限速有助于降低车均延误;增大交叉口间距可在初期减少车均延误,但达到临界点后会出现延误反弹,而轨迹与信号的协同优化能有效遏制延误的反弹。展开更多
文摘为提升高速公路合流区交通运行效率及驾乘人员舒适性,在保障安全的前提下,面向人工驾驶车辆(Human Driven Vehicles,HDV)和智能网联车辆(Connected and Autonomous Vehicles,CAV)混行的异质交通流环境,提出高速公路CAV合流次序优化与轨迹规划方法.首先,以车辆通行时间和延误作为合流区交通运行效率表征指标,建立合流次序优化函数,采用并调整蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)算法,获得最优合流次序;其次,依据合流次序,建立最小化加速度和急动度的CAV合流轨迹规划(Minimize Acceleration and Jerk Trajectory Planning,MAJTP)函数,运用最优控制理论,求解车辆纵向最优轨迹解析解,进而形成高速公路合流区CAV协同控制方法;最后,联合运用SUMO软件和PYTHON库,对本文所提方法进行交通仿真验证.仿真结果表明:在CAV渗透率分别为0.2、0.4、0.6和0.8时,相较于先进先出(First In First Out,FIFO)算法,基于MCTS算法的合流次序优化方法累积延误分别降低5.75%、8.84%、12.24%和11.06%;相较于最小化加速度的车辆轨迹规划(Minimize Acceleration Trajectory Planning,MATP)方法,MAJTP方法平均急动度更趋近于零,驾乘人员舒适性有所提升,验证了方法的有效性.研究成果可为高速公路合流区交通运行管控研究提供理论支持.
文摘车辆临近交叉口的变道行为会制约交叉口通行效率的提升。基于此,本文提出一种网联车辆环境下城市道路交通流分段协同控制方法(Segmented Cooperative cOntrol Method for Urban Road Traffic Flow,SCOM-URTF),该方法采用双层优化模型,实现路段功能区动态划分和路段—交叉口交通流的协同优化。上层模型设计了一种分车道速度诱导错位变道策略(Misaligned Lane-changing with Separated Lane Speed Guidance,ML-SLSG),通过纵向空间错位排列促成左转和右转车辆的快速变道,最小化车辆变道区长度,并均衡车道组交通流量;下层模型以最小化车均延误为目标,基于动态规划法协同优化网联车辆的轨迹与交叉口信号配时参数。仿真结果表明,ML-SLSG策略能有效缩短变道长度,在低、中和高这3种交通负荷下,本文提出的车辆纵向轨迹优化模型能使交叉口车均延误减少5.9%~8.0%,且与信号配时协同优化后,车均延误可再降低3.7%~22.8%。与同类方法对比研究表明,SCOM-URTF更适合多种驾驶行为相互协调的交通环境。敏感性分析显示,更高的CAV渗透率和道路限速有助于降低车均延误;增大交叉口间距可在初期减少车均延误,但达到临界点后会出现延误反弹,而轨迹与信号的协同优化能有效遏制延误的反弹。