目的基于深度学习算法构建宫颈原位腺癌(cervical adenocarcinoma in situ,CAIS)病理图像诊断模型。方法回顾性收集2019年1月至2021年12月中国医科大学附属盛京医院病理科保存的CAIS患者病变组织、慢性宫颈炎患者正常宫颈管腺体病理切...目的基于深度学习算法构建宫颈原位腺癌(cervical adenocarcinoma in situ,CAIS)病理图像诊断模型。方法回顾性收集2019年1月至2021年12月中国医科大学附属盛京医院病理科保存的CAIS患者病变组织、慢性宫颈炎患者正常宫颈管腺体病理切片。图像采集后,均按4∶3∶3的比例随机分为训练集、验证集和测试集。使用训练集、验证集数据对VGG16、VGG19、Inception V3、Xception、ResNet50和DenseNet201共6种网络模型进行迁移学习训练和参数调试,构建可识别CAIS病理图像的卷积神经网络二分类模型,并将模型进行组合,构建集成学习模型。基于测试集数据,采用运算时间、准确率、精确率、召回率、F1值、受试者操作特征曲线下面积(area under the curve,AUC)对模型识别CAIS病理图像的性能进行评价。结果共入选符合纳入和排除标准的CAIS患者病理切片104张、慢性宫颈炎患者正常宫颈管腺体病理切片90张。共收集CAIS、正常宫颈管腺体病理图像各500张,其中训练集、验证集、测试集图像分别400张、300张、300张。6种模型中,ResNet50模型的准确率(87.33%)、精确率(90.00%)、F1值(86.90%)及AUC(0.87)均最高,召回率(84.00%)居第2位,运算时间较短(2062.04 s),整体性能最佳,VGG19模型次之,Inception V3与Xception模型的性能最差。6种集成学习模型中,ResNet50与DenseNet201集成模型的整体性能最优,其准确率、精确率、召回率、F1值、AUC分别为89.67%、84.67%、94.07%、89.12%、0.90,VGG19与ResNet50集成模型次之。结论通过深度学习算法构建CAIS病理图像识别模型具有可行性,其中ResNet50模型的整体性能较高。集成学习可提高单一模型对病理图像的识别效果。展开更多
电子病历数据经常存在缺失,严重影响分析结果.基于MIMIC数据库中的重症监护单元(intensive care unit,ICU)患者数据研究缺失值插补,数据集由23组临床常用生理变量以及不存在缺失的5260例样本构成.提出了一种基于深度嵌入聚类的K近邻插...电子病历数据经常存在缺失,严重影响分析结果.基于MIMIC数据库中的重症监护单元(intensive care unit,ICU)患者数据研究缺失值插补,数据集由23组临床常用生理变量以及不存在缺失的5260例样本构成.提出了一种基于深度嵌入聚类的K近邻插值方法.该方法以深度嵌入聚类为核心,通过多次聚类构造样本邻近度矩阵,再选择缺失样本的K个近邻样本,以这些近邻样本的平均值填补缺失.与均值插补、中值插补、后验分布估算插补和条件均值插补相比,该方法插补后的结果与原数据相似度更高,且更好地保留了样本间的差异性.展开更多
为解决脑脊液病理图像中部分细胞膜较为模糊,与图像背景难以区分的问题,采用了基于注意力机制的U-Net深度学习方法对脑脊液病理图像做全自动分割.在深度学习网络中加入注意力机制对细胞进行定位,抑制无关信息,提高语义的特征表达,提高...为解决脑脊液病理图像中部分细胞膜较为模糊,与图像背景难以区分的问题,采用了基于注意力机制的U-Net深度学习方法对脑脊液病理图像做全自动分割.在深度学习网络中加入注意力机制对细胞进行定位,抑制无关信息,提高语义的特征表达,提高对细胞整体分割的精确性.通过镜像、旋转等操作对数据集进行扩充预处理.采用VGG16预训练模型进行迁移学习,交叉熵与Dice损失相结合作为损失函数,分别在脑脊液临床图像与公开数据集2018 Data Science Bowl上进行验证;并与Otsu,PSPnet,Segnet,DeeplabV3+,U-Net进行对比,结果表明,本文方法在各项指标上均优于其他分割方法.展开更多
文摘目的基于深度学习算法构建宫颈原位腺癌(cervical adenocarcinoma in situ,CAIS)病理图像诊断模型。方法回顾性收集2019年1月至2021年12月中国医科大学附属盛京医院病理科保存的CAIS患者病变组织、慢性宫颈炎患者正常宫颈管腺体病理切片。图像采集后,均按4∶3∶3的比例随机分为训练集、验证集和测试集。使用训练集、验证集数据对VGG16、VGG19、Inception V3、Xception、ResNet50和DenseNet201共6种网络模型进行迁移学习训练和参数调试,构建可识别CAIS病理图像的卷积神经网络二分类模型,并将模型进行组合,构建集成学习模型。基于测试集数据,采用运算时间、准确率、精确率、召回率、F1值、受试者操作特征曲线下面积(area under the curve,AUC)对模型识别CAIS病理图像的性能进行评价。结果共入选符合纳入和排除标准的CAIS患者病理切片104张、慢性宫颈炎患者正常宫颈管腺体病理切片90张。共收集CAIS、正常宫颈管腺体病理图像各500张,其中训练集、验证集、测试集图像分别400张、300张、300张。6种模型中,ResNet50模型的准确率(87.33%)、精确率(90.00%)、F1值(86.90%)及AUC(0.87)均最高,召回率(84.00%)居第2位,运算时间较短(2062.04 s),整体性能最佳,VGG19模型次之,Inception V3与Xception模型的性能最差。6种集成学习模型中,ResNet50与DenseNet201集成模型的整体性能最优,其准确率、精确率、召回率、F1值、AUC分别为89.67%、84.67%、94.07%、89.12%、0.90,VGG19与ResNet50集成模型次之。结论通过深度学习算法构建CAIS病理图像识别模型具有可行性,其中ResNet50模型的整体性能较高。集成学习可提高单一模型对病理图像的识别效果。
文摘电子病历数据经常存在缺失,严重影响分析结果.基于MIMIC数据库中的重症监护单元(intensive care unit,ICU)患者数据研究缺失值插补,数据集由23组临床常用生理变量以及不存在缺失的5260例样本构成.提出了一种基于深度嵌入聚类的K近邻插值方法.该方法以深度嵌入聚类为核心,通过多次聚类构造样本邻近度矩阵,再选择缺失样本的K个近邻样本,以这些近邻样本的平均值填补缺失.与均值插补、中值插补、后验分布估算插补和条件均值插补相比,该方法插补后的结果与原数据相似度更高,且更好地保留了样本间的差异性.
文摘为解决脑脊液病理图像中部分细胞膜较为模糊,与图像背景难以区分的问题,采用了基于注意力机制的U-Net深度学习方法对脑脊液病理图像做全自动分割.在深度学习网络中加入注意力机制对细胞进行定位,抑制无关信息,提高语义的特征表达,提高对细胞整体分割的精确性.通过镜像、旋转等操作对数据集进行扩充预处理.采用VGG16预训练模型进行迁移学习,交叉熵与Dice损失相结合作为损失函数,分别在脑脊液临床图像与公开数据集2018 Data Science Bowl上进行验证;并与Otsu,PSPnet,Segnet,DeeplabV3+,U-Net进行对比,结果表明,本文方法在各项指标上均优于其他分割方法.