期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合改进的损失函数与多重范数的人脸识别 被引量:5
1
作者 张飞翔 余学儒 +1 位作者 何卫锋 李琛 《计算机工程与应用》 CSCD 北大核心 2020年第24期144-150,共7页
针对在卷积神经网络中定义损失函数为余弦裕度损失函数(Cosineface)后导致收敛变慢以及在实际使用过程中使用L2范数衡量特征相似度存在缺陷的问题,提出了斜率可变的余弦裕度损失函数(Kcosine)和多重范数计算特征相似度的方法。该方法通... 针对在卷积神经网络中定义损失函数为余弦裕度损失函数(Cosineface)后导致收敛变慢以及在实际使用过程中使用L2范数衡量特征相似度存在缺陷的问题,提出了斜率可变的余弦裕度损失函数(Kcosine)和多重范数计算特征相似度的方法。该方法通过在余弦裕度损失函数的基础上添加余弦斜率因子,使得损失函数类内约束随着余弦值的增大而逐渐增强,显式地缩小类内距离,同时利用L2范数和L∞范数构建人脸特征相似度向量,并通过支撑向量机(SVM)实现分类,修正L2范数空间衡量的不稳定性。在LFW和Agedb的数据库上1∶1验证实验表明,改进的损失函数不仅加快了训练的收敛速度,并且将类内距离减少15%以上,同时通过使用多重范数特征代替L2范数,可以将识别率均值提升0.1%左右,标准差也有所降低。 展开更多
关键词 损失函数 L_2范数 多重范数 人脸识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部