期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络建立中药材自动识别的人工智能模型及应用程序 被引量:1
1
作者 王甘红 张子豪 +3 位作者 奚美娟 夏开建 周燕婷 陈健 《中国全科医学》 北大核心 2025年第9期1128-1136,共9页
背景传统中药材检测手段依赖主观经验,难以满足中药材在准确分类与鉴别方面的需求。目的基于卷积神经网络(CNN)开发一款能够自动识别163种中药材的人工智能模型及电脑端应用程序。方法2020年1月—2024年6月,采集了两个中药材数据集进行... 背景传统中药材检测手段依赖主观经验,难以满足中药材在准确分类与鉴别方面的需求。目的基于卷积神经网络(CNN)开发一款能够自动识别163种中药材的人工智能模型及电脑端应用程序。方法2020年1月—2024年6月,采集了两个中药材数据集进行深度学习模型的训练、验证和测试,共包含163种中药材。通过准确率、灵敏度、特异度、精确率、受试者工作特征(ROC)曲线下面积(AUC)、F1分数等指标来衡量CNN模型的性能。在模型训练完成后,基于PyQt5技术开发了一款应用程序,供临床便携使用。结果本研究共纳入了276767张图像,开发了EfficientNetB0、ResNet50、MobileNetV3、VGG19和ResNet185种模型,通过性能比较,EfficientNet_B0模型在验证集上取得了最高的准确率(99.0%)和AUC(0.9942),被选为最佳模型。在测试集上,最佳模型对所有中药类别识别的准确率为99.0%、灵敏度为99.0%、特异度为100.0%、AUC为1.0,展现出良好的性能。结论基于卷积神经网络开发的深度学习模型能够快速准确地识别163种中药材,借助其高灵敏度的识别能力,为医师对中药材的鉴别提供有力辅助。 展开更多
关键词 中药材 模式识别 自动 中药药材学 应用程序 人工智能 PyQt5 卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部