期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于注意力机制语义增强的文档级关系抽取
被引量:
1
1
作者
柳先辉
吴文达
+1 位作者
赵卫东
侯文龙
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第5期822-828,共7页
文档级关系抽取旨在从文档中抽取出多个实体对之间的关系,具有较高的复杂性。针对文档级关系抽取中的多实体、关系相关性、关系分布不平衡等问题,提出了一种基于注意力机制(Attention)语义增强的文档级关系抽取方法,能够实现实体对之间...
文档级关系抽取旨在从文档中抽取出多个实体对之间的关系,具有较高的复杂性。针对文档级关系抽取中的多实体、关系相关性、关系分布不平衡等问题,提出了一种基于注意力机制(Attention)语义增强的文档级关系抽取方法,能够实现实体对之间关系的推理。具体来说,首先在数据编码模块改进编码策略,引入更多实体信息,通过编码网络捕获文档的语义特征,获得实体对矩阵;然后,设计了一个基于Attention门控机制的U-Net网络,对实体对矩阵进行局部信息捕获和全局信息汇总,实现语义增强;最后,使用自适应焦点损失函数缓解关系分布不平衡的问题。在4个公开的文档级关系抽取数据集(DocRED、CDR、GDA和DWIE)上评估了Att-DocuNet模型并取得了良好的实验结果。
展开更多
关键词
文档级关系抽取
注意力机制
语义增强
焦点损失
在线阅读
下载PDF
职称材料
题名
基于注意力机制语义增强的文档级关系抽取
被引量:
1
1
作者
柳先辉
吴文达
赵卫东
侯文龙
机构
同济大学电子与信息
工程
学院
上海视觉感知与智能计算工程技术研究中心
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第5期822-828,共7页
基金
国家重点研发计划(2020YFB1709303)。
文摘
文档级关系抽取旨在从文档中抽取出多个实体对之间的关系,具有较高的复杂性。针对文档级关系抽取中的多实体、关系相关性、关系分布不平衡等问题,提出了一种基于注意力机制(Attention)语义增强的文档级关系抽取方法,能够实现实体对之间关系的推理。具体来说,首先在数据编码模块改进编码策略,引入更多实体信息,通过编码网络捕获文档的语义特征,获得实体对矩阵;然后,设计了一个基于Attention门控机制的U-Net网络,对实体对矩阵进行局部信息捕获和全局信息汇总,实现语义增强;最后,使用自适应焦点损失函数缓解关系分布不平衡的问题。在4个公开的文档级关系抽取数据集(DocRED、CDR、GDA和DWIE)上评估了Att-DocuNet模型并取得了良好的实验结果。
关键词
文档级关系抽取
注意力机制
语义增强
焦点损失
Keywords
document-level relation extraction
attention mechanism
semantic enhancement
focal loss
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于注意力机制语义增强的文档级关系抽取
柳先辉
吴文达
赵卫东
侯文龙
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部