期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
注意力可变形卷积网络的木质板材瑕疵识别
被引量:
6
1
作者
朱咏梅
李玉玲
+1 位作者
奚峥皓
盛鸿宇
《西南大学学报(自然科学版)》
CSCD
北大核心
2024年第2期159-169,共11页
为了解决木材缺陷检测中人工成本高、效率低的问题,该文基于可变性卷积网络和注意力机制,提出一种端到端的神经架构模型.首先,可变形卷积网络(Deformable Convolutional Network, DCN)通过将矩形网格转换为变形网格,使模型专注于具有更...
为了解决木材缺陷检测中人工成本高、效率低的问题,该文基于可变性卷积网络和注意力机制,提出一种端到端的神经架构模型.首先,可变形卷积网络(Deformable Convolutional Network, DCN)通过将矩形网格转换为变形网格,使模型专注于具有更多有用图像信息的区域.使用可变形卷积网络可以忽略图像特征中不相关的系数,解决了传统卷积在特征中学习更多信息能力有限的问题.然后,将DCN输出馈送到门控循环单元(Gated Recurrent Unit, GRU)层以学习缺陷图像的高级特征.最后,通过关注输入图像的最重要特征,应用注意力机制加强瑕疵区域的高亮度,从而提高模型识别的准确性.使用Matlab平台在4个木质板材缺陷数据集上将该文方法与现有其他方法进行比较分析,该文方法的准确率比其他3种对比方法提高了2.4%~13.2%的维度,灵敏度提高了3.3%~16.6%的维度,特异性提高了4%~21%的维度.实验结果表明,该文方法在检测精度和其他各个性能方面均优于现有方法,最佳准确率为99.2%,证明了该文方法的有效性.
展开更多
关键词
可变形卷积网络
注意力机制
瑕疵识别
缺陷
深度学习
木质板材
在线阅读
下载PDF
职称材料
题名
注意力可变形卷积网络的木质板材瑕疵识别
被引量:
6
1
作者
朱咏梅
李玉玲
奚峥皓
盛鸿宇
机构
上海电子信息职业技术学院继续教育学院
北京科技大学自动化
学院
上海
工程
技术
大学
电子
电气工程
学院
北京联合大学机器人
学院
出处
《西南大学学报(自然科学版)》
CSCD
北大核心
2024年第2期159-169,共11页
基金
国家自然科学基金项目(12104289)。
文摘
为了解决木材缺陷检测中人工成本高、效率低的问题,该文基于可变性卷积网络和注意力机制,提出一种端到端的神经架构模型.首先,可变形卷积网络(Deformable Convolutional Network, DCN)通过将矩形网格转换为变形网格,使模型专注于具有更多有用图像信息的区域.使用可变形卷积网络可以忽略图像特征中不相关的系数,解决了传统卷积在特征中学习更多信息能力有限的问题.然后,将DCN输出馈送到门控循环单元(Gated Recurrent Unit, GRU)层以学习缺陷图像的高级特征.最后,通过关注输入图像的最重要特征,应用注意力机制加强瑕疵区域的高亮度,从而提高模型识别的准确性.使用Matlab平台在4个木质板材缺陷数据集上将该文方法与现有其他方法进行比较分析,该文方法的准确率比其他3种对比方法提高了2.4%~13.2%的维度,灵敏度提高了3.3%~16.6%的维度,特异性提高了4%~21%的维度.实验结果表明,该文方法在检测精度和其他各个性能方面均优于现有方法,最佳准确率为99.2%,证明了该文方法的有效性.
关键词
可变形卷积网络
注意力机制
瑕疵识别
缺陷
深度学习
木质板材
Keywords
deformable convolutional networks
attention mechanism
defect recognition
defects
deep learning
wood panels
分类号
TP393 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
注意力可变形卷积网络的木质板材瑕疵识别
朱咏梅
李玉玲
奚峥皓
盛鸿宇
《西南大学学报(自然科学版)》
CSCD
北大核心
2024
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部