-
题名基于字典算法的OCT图像散斑稀疏降噪
被引量:6
- 1
-
-
作者
王帆
陈明惠
高乃珺
张晨曦
郑刚
-
机构
上海理工大学教育部现代微创医疗器械及技术工程研究中心生物医学光学与视光学研究所
-
出处
《光电工程》
CAS
CSCD
北大核心
2019年第6期65-72,共8页
-
基金
国家自然科学基金青年科学基金资助项目(6130115)
上海市自然科学基金资助项目(13ZR1457900)
上海市科委产学研医项目(15DZ1940400)~~
-
文摘
光学相干层析扫描(OCT)作为一种新型无创高分辨率扫描方式,在临床上得到广泛应用,但是OCT图像本身存在严重的散斑噪声,这大大影响了疾病的诊断。本文针对OCT图像中的乘性散斑噪声,改进了两种原始字典降噪算法。该算法首先对OCT图像进行对数变换,采用正交匹配追踪算法进行稀疏编码,以及K奇异值分解学习算法进行自适应字典的更新,最后通过加权平均以及指数变换回到空域。实验结果表明,本文改进的两种字典算法能有效降低OCT图像中的散斑噪声,获得良好的视觉效果。并通过均方误差(MSE)、峰值信噪比(PSNR)、结构相似性(SSIM)以及边缘保持指数(EPI)四个指标评价降噪效果,与两种原始字典降噪算法和传统滤波算法相比,两种改进字典算法降噪效果优于其他算法,其中自适应字典算法表现更好。
-
关键词
光学相干层析成像
稀疏表示
字典学习
散斑噪声
图像降噪
-
Keywords
optical coherence tomography
sparse representation
dictionary learning
speckle
image noise reduction
-
分类号
TP391.41
[自动化与计算机技术—计算机应用技术]
-