本文研究了一类具有不同采样率的分布式多传感器动态系统的数据融合问题,针对一类采样率呈有理数倍关系的动态系统,提出一种基于多源异步采样数据的新融合算法.新算法首先是将来自各个传感器的测量值在融合中心的坐标系中和时钟下进行...本文研究了一类具有不同采样率的分布式多传感器动态系统的数据融合问题,针对一类采样率呈有理数倍关系的动态系统,提出一种基于多源异步采样数据的新融合算法.新算法首先是将来自各个传感器的测量值在融合中心的坐标系中和时钟下进行映射统一;其次,以对目标状态下一时刻的预测值与目标在该时刻状态的估计值之差为基础,建立起描述该融合周期内各个观测点处的目标状态向量之间的动态模型;然后,以该时刻目标状态基于全局信息的估计值为条件,结合建立的新模型和传统的K a lm an滤波器,利用本周期内按序到达的各传感器观测值,依次对各个观测点处目标的状态进行估计和更新;最后,在顺序得到本周期内各个观测点处目标估计值的同时,也将获得下一时刻目标状态基于全局信息的估计值或预测估计值.文中在给出新算法基本思想的同时,也较为详细地对融合算法进行了推导,并通过计算机仿真的方法,将新算法与基于时间校准的算法在估计精确度上进行了比较,从而验证了新算法的有效性.展开更多
文摘传统主元分析(Principal component analysis,PCA)方法因忽视量纲对系统的影响,从而使选取的主元难以具有代表性;而在进行量纲标准化后,又因得到的特征值常常是近似相等的而无法进行有效的主元提取.针对这一主要问题,本文通过引入相对化变换(Relative transform,RT)、相对主元(Relative principal components,RPCs)和分布"均匀"等概念,建立起一种相对主元分析(Relative principal component analysis,RPCA)的新方法.该方法首先对系统各分量进行量纲标准化;其次再根据系统的先验信息分析和确定各分量的重要程度;然后在系统能量守恒的准则下,赋以系统各分量相应的权值;最后利用已建立起的相对主元模型,对系统实施RPCA.同时运用数值例子,开展了RPCA在数据压缩和系统故障诊断中的应用研究.理论分析和仿真实验均表明,采用RPCA方法选取出的主元更具代表性和显著几何意义,加之选取主元的灵活性,将使新方法具有更广泛的应用前景。
文摘本文研究了一类具有不同采样率的分布式多传感器动态系统的数据融合问题,针对一类采样率呈有理数倍关系的动态系统,提出一种基于多源异步采样数据的新融合算法.新算法首先是将来自各个传感器的测量值在融合中心的坐标系中和时钟下进行映射统一;其次,以对目标状态下一时刻的预测值与目标在该时刻状态的估计值之差为基础,建立起描述该融合周期内各个观测点处的目标状态向量之间的动态模型;然后,以该时刻目标状态基于全局信息的估计值为条件,结合建立的新模型和传统的K a lm an滤波器,利用本周期内按序到达的各传感器观测值,依次对各个观测点处目标的状态进行估计和更新;最后,在顺序得到本周期内各个观测点处目标估计值的同时,也将获得下一时刻目标状态基于全局信息的估计值或预测估计值.文中在给出新算法基本思想的同时,也较为详细地对融合算法进行了推导,并通过计算机仿真的方法,将新算法与基于时间校准的算法在估计精确度上进行了比较,从而验证了新算法的有效性.