期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合注意力机制SimAM的CNN-MogrifierLSTM航班延误波及预测 被引量:2
1
作者 屈景怡 张金杰 +1 位作者 赵娅倩 李云龙 《信号处理》 CSCD 北大核心 2022年第11期2412-2423,共12页
连续航班中的延误波及往往会引起大规模的航班延误产生,提前对航班延误波及问题进行预测可以为民航部门提供有效参考,减少相关的经济损失。本文首先对航班数据进行清洗与数据融合,针对空管部门实际航班运行情况提出强空间航班链数据集... 连续航班中的延误波及往往会引起大规模的航班延误产生,提前对航班延误波及问题进行预测可以为民航部门提供有效参考,减少相关的经济损失。本文首先对航班数据进行清洗与数据融合,针对空管部门实际航班运行情况提出强空间航班链数据集与强时序航班链数据集两种不同的构造方法;然后根据航班延误波及传播的空时特性提出融合注意力机制SimAM的CNN-MogrifierLSTM网络模型,先使用卷积神经网络(Convolutional Neural Network,CNN)结合注意力机制SimAM模块对空间特征进行提取,再用形变的长短时记忆网络(Mogrifier Recurrent Neural Network,MogrifierLSTM)对时序信息进行学习;最后使用Softmax分类器对延误等级进行分类预测。本文提出的预测方法,在航班延误波及进行预测的实验中取得了93.16%的准确率,相比单独使用CNN或LSTM大有提升,加上SimAM注意力机制后相比CNN-MogrifierLSTM网络在不同数据集上准确率也提升了0.6%左右。 展开更多
关键词 航班延误波及预测 航班链 形变的长短时记忆网络 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部